Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxins (Basel) ; 16(6)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38922130

RESUMO

Fusarium verticillioides produces fumonisins, which are mycotoxins inhibiting sphingolipid biosynthesis in humans, animals, and other eukaryotes. Fumonisins are presumed virulence factors of plant pathogens, but may also play a role in interactions between competing fungi. We observed higher resistance to added fumonisin B1 (FB1) in fumonisin-producing Fusarium verticillioides than in nonproducing F. graminearum, and likewise between isolates of Aspergillus and Alternaria differing in production of sphinganine-analog toxins. It has been reported that in F. verticillioides, ceramide synthase encoded in the fumonisin biosynthetic gene cluster is responsible for self-resistance. We reinvestigated the role of FUM17 and FUM18 by generating a double mutant strain in a fum1 background. Nearly unchanged resistance to added FB1 was observed compared to the parental fum1 strain. A recently developed fumonisin-sensitive baker's yeast strain allowed for the testing of candidate ceramide synthases by heterologous expression. The overexpression of the yeast LAC1 gene, but not LAG1, increased fumonisin resistance. High-level resistance was conferred by FUM18, but not by FUM17. Likewise, strong resistance to FB1 was caused by overexpression of the presumed F. verticillioides "housekeeping" ceramide synthases CER1, CER2, and CER3, located outside the fumonisin cluster, indicating that F. verticillioides possesses a redundant set of insensitive targets as a self-resistance mechanism.


Assuntos
Fumonisinas , Fusarium , Oxirredutases , Fumonisinas/metabolismo , Fusarium/genética , Fusarium/metabolismo , Fusarium/enzimologia , Oxirredutases/metabolismo , Oxirredutases/genética , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Aspergillus/enzimologia , Alternaria/genética , Alternaria/enzimologia
2.
Appl Environ Microbiol ; 89(12): e0121123, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38054733

RESUMO

IMPORTANCE: Fumonisins can cause diseases in animals and humans consuming Fusarium-contaminated food or feed. The search for microbes capable of fumonisin degradation, or for enzymes that can detoxify fumonisins, currently relies primarily on chemical detection methods. Our constructed fumonisin B1-sensitive yeast strain can be used to phenotypically detect detoxification activity and should be useful in screening for novel fumonisin resistance genes and to elucidate fumonisin metabolism and resistance mechanisms in fungi and plants, and thereby, in the long term, help to mitigate the threat of fumonisins in feed and food.


Assuntos
Fumonisinas , Fusarium , Humanos , Animais , Fumonisinas/toxicidade , Fumonisinas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ração Animal , Fusarium/genética , Fusarium/metabolismo
3.
J Fungi (Basel) ; 7(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809896

RESUMO

Fullerol C60(OH)24 nanoparticles (FNP)-wheat-A. flavus interaction outcome is more complicated in the presence of drought. This study sheds light on how the presence of FNP affects food and feed safety from the perspective of mycotoxin contamination. The study aims to determine the influence of FNP at environmentally plausible concentrations on wheat growth under drought stress and on the aggressiveness of A. flavus during wheat germination, as well as the influence of FNP on the secondary metabolite profile during the inappropriate wheat storage. The co-occurrence of drought and FNP inhibited germination and shoot growth, while an application of FNP alone had no negative effect on plant growth. Wheat pre-treated with FNP showed a concentration dependent resistance pattern to A. flavus aggressiveness. Nevertheless, using a LC-MS/MS based multi-mycotoxin method, six secondary fungal metabolites: 3-nitropropionic acid (

4.
Toxins (Basel) ; 12(4)2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32230978

RESUMO

Despite the efforts to control mycotoxin contamination worldwide, extensive contamination has been reported to occur in food and feed. The contamination is even more intense due to climate changes and different stressors. This study examined the impact of fullerol C60(OH)24 nanoparticles (FNP) (at 0, 1, 10, 100, and 1000 ng mL-1) on the secondary metabolite profile of the most relevant foodborne mycotoxigenic fungi from genera Aspergillus, Fusarium, Alternaria and Penicillium, during growth in vitro. Fungi were grown in liquid RPMI 1640 media for 72 h at 29 °C, and metabolites were investigated by the LC-MS/MS dilute and shoot multimycotoxin method. Exposure to FNP showed great potential in decreasing the concentrations of 35 secondary metabolites; the decreases were dependent on FNP concentration and fungal genus. These results are a relevant guide for future examination of fungi-FNP interactions in environmental conditions. The aim is to establish the exact mechanism of FNP action and determine the impact such interactions have on food and feed safety.


Assuntos
Microbiologia de Alimentos , Doenças Transmitidas por Alimentos/prevenção & controle , Fulerenos/farmacologia , Fungicidas Industriais/farmacologia , Fungos Mitospóricos/efeitos dos fármacos , Nanopartículas , Metabolismo Secundário/efeitos dos fármacos , Alternaria/efeitos dos fármacos , Alternaria/crescimento & desenvolvimento , Alternaria/metabolismo , Aspergillus/efeitos dos fármacos , Aspergillus/crescimento & desenvolvimento , Aspergillus/metabolismo , Doenças Transmitidas por Alimentos/microbiologia , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Fungos Mitospóricos/crescimento & desenvolvimento , Fungos Mitospóricos/metabolismo , Penicillium/efeitos dos fármacos , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA