Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microsc Res Tech ; 68(6): 347-59, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16358285

RESUMO

The present investigation was designed to investigate the fate of the large pool of neurohypophyseal hormones that is never released into the blood. Normal Sprague-Dawley and taiep mutant rats were investigated under normal water balance, after dehydration and after dehydration-rehydration. Lectin histochemistry and light- and electron-microscopic immunocytochemistry using antibodies against vasopressin, oxytocin, and neurophysins used at low (1:1,000) and high (1:15,000) dilutions allowed to distinguish (1) recently packed immature granules, as those located in the perikaryon; (2) mature; and (3) aged granules. The distribution of these granules within the different domains of the neurosecretory axons located in the neural lobe, namely, undilated segments, swellings, terminals, and Herring bodies, and the response of these compartments to dehydration and dehydration-rehydration allowed to roughly follow the routing of the granules through such axonal domains. It is suggested that granules may move backward and forward between the terminals and the swellings. At variance, aged granules located in Herring body are retained in this compartment and would finally become degraded. Herring bodies displayed distinct lectin binding and immunocytochemical properties, allowing to distinguish them from axonal swellings. After a dehydration-rehydration cycle, immunocytochemistry and electron microscopy revealed that Herring bodies were no longer present in the neural lobe and that several terminals had degenerated. It is concluded that (1) the neurophysin axons may undergo remodeling under appropriate stimuli and (2) Herring bodies are a specialized and plastic domain of the magnocellular neurosecretory neuron involved in the disposal of aged neurosecretory granules. No differences were detected at the neural lobe level between normal and mutant rats subjected to the same experimental conditions.


Assuntos
Envelhecimento/metabolismo , Axônios/fisiologia , Neurofisinas/metabolismo , Neuro-Hipófise/ultraestrutura , Animais , Axônios/química , Axônios/ultraestrutura , Neurossecreção , Ratos , Ratos Sprague-Dawley
2.
Biol. Res ; 32(4): 253-62, 1999.
Artigo em Inglês | LILACS | ID: lil-264238

RESUMO

Taiep is an autosomal recessive mutant rat that shows a highly hypomyelinated central nervous system (CNS). Oligodendrocytes accumulate microtubules (MTs) in association with endoplasmic reticulum (ER) membranes forming MT-ER complexes. The microtubular defect in oligodendrocytes, the abnormal formation of CNS myelin and the astrocytic reaction were characterized by immunocytochemical and ultrastructural methods during the first year of life. Optic nerves of both control and taiep rats were processed by the immunoperoxidase method using antibodies against tubulin, myelin basic protein (MBP) and glial fibrillary acidic protein (GFAP). Taiep oligodendrocytes are strongly immunoreactive against tubulin, indicative of a significant accumulation of microtubules. Early differentiated oligodendrocytes observed with electron microscopy show that MT-ER complexes are mainly present in the cell body. This defect increases during the first year of life; oligodendrocytes show large MT-ER complexes projected within oligodendrocyte processes. Using anti-MBP, there was a progressive reduction of immunolabeling in the myelin sheaths as taiep rats grew older. Ultrastructural analysis revealed severely dysmyelinated axons with a frequently collapsed periaxonal collar. However, through age the myelin sheath became gradually infiltrated by MTs, suggesting their contribution to premature loss of myelin in the taiep rat. Axons of one-year-old taiep rats were severely demyelinated. Modifications in astrocytes revealed by the GFAP antibody showed a strong hypertrophy with increased immunostaining in their processes. As demyelination of axons progressed, taiep rats developed a strong astrogliosis. The present findings suggest that in taiep rats the early abnormal myelination of axons affects the adequate maintenance of myelin, leading to a progressive loss of myelin components and severe astrogliosis, features that should be considered in the pathogenesis of dysmyelinating diseases


Assuntos
Animais , Masculino , Ratos , Astrócitos/ultraestrutura , Doenças Desmielinizantes/patologia , Microtúbulos/ultraestrutura , Oligodendroglia/ultraestrutura , Nervo Óptico/ultraestrutura , Astrócitos/ultraestrutura , Estudos de Casos e Controles , Técnicas Imunoenzimáticas , Imuno-Histoquímica , Ratos Mutantes , Ratos Sprague-Dawley , Tubulina (Proteína)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...