Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gen Comp Endocrinol ; 331: 114176, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36410448

RESUMO

Methyl farnesoate (MF), a crustacean equivalent of juvenile hormone (JH) of insects, is known to be produced from the mandibular organ (MO). This study reports transcriptome analysis of Penaeus monodon MO and identifies putative genes encoding enzymes in the sesquiterpenoid pathway. A total of 44,490,420 clean reads were obtained and utilized for subsequent analysis. De novo assembly created 31,201 transcripts and 31,167 unigenes. To archive the functional annotation, all unigenes were annotated with KOG, KEGG, and GO. Putative genes encoding enzymes and regulatory proteins involved in the sesquiterpenoid pathway were obtained from the MO transcriptome data based on the conserved domains and sequence homology. They included S-adenosylmethionine synthetase, farnesyl pyrophosphate synthase, short chain dependent dehydrogenase/reductase (SDR), NAD(P) + -dependent aldehyde dehydrogenase, S-adenosylmethionine-dependent methyltransferases or juvenile hormone acid-O-methyl transferase (JHAMT), farnesoic acid O-methyl transferase (FAMeT), juvenile hormone binding protein, cytochrome C/P-450 family 15 (CRYP15A1)/methylfarnesoate epoxidase (MFE), juvenile hormone epoxide hydrolase (JHEH), and juvenile hormone esterase (JHE). We first identified and characterized JHAMT orthologs inP. monodon(PmJHAMT). The complete cDNA sequence ofPmJHAMTconsisted of 1,221 nt encoded 271 amino acids with a conserved S-adenosyl methionine (SAM) binding domain. Phylogenetic analysis clusteredPmJHAMTinto the group JHAMT with the same clade of the crabPortunus trituberculausJHAMT. Moreover, the predicted three-dimensional structure of PmJHAMT showed remarkable similarity with the recent crystal structure ofthe Bombyx moriJHAMT homodimer. RT-PCR analysis revealed that PmJHAMT was exclusively expressed in MO and initially expressed at stage 3 postlarvae. In situ hybridization with a specific probe to PmJHAMT validated the specific expression of this gene in MO cells. Finally, we evaluated the regulation of MO by eyestalk inhibitory peptides. Diminishing MO inhibitory hormone through unilateral eyestalk ablation resulted in a significantly higher expression ofPmJHAMTin MO by quantitative PCR. This result indicated that the eyestalk inhibitory hormone inhibited MF synthesis byPmJHAMTgene suppression in the MO. This finding provides insight into the crustacean sesquiterpenoid pathway and improves our understanding of crustacean endocrinology.


Assuntos
Penaeidae , Sesquiterpenos , Animais , Penaeidae/metabolismo , Filogenia , S-Adenosilmetionina , Hormônios Juvenis/metabolismo , Metiltransferases/metabolismo , Clonagem Molecular
2.
J Exp Biol ; 225(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35578905

RESUMO

Pyrokinins (PKs) are neuropeptides that have been found to regulate a variety of physiological activities including reproduction in various insect and crustacean species. However, the reproductive roles of PKs in the giant freshwater prawn, Macrobrachium rosenbergii, have not yet been investigated. In this study, we identified the MroPK gene from next-generation sequence resources, which encodes a MroPK precursor that shares a high degree of conservation with the C-terminal sequence of FxPRLamide in other arthropods. MroPK is expressed within most tissues, except the hepatopancreas, stomach and gill. Within developing ovarian tissue, MroPK expression was found to be significantly higher during the early stages (stages 1-2) compared with the late stages (stages 3-4), and could be localized to the oogonia, previtellogenic and early vitellogenic oocytes. A role for PK in M. rosenbergii reproduction was supported following experimental administration of MroPK to ovarian explant cultures, which led to an increase in the production of progesterone and estradiol and upregulation of expression of steroidogenesis-related genes (3ß-HSD and 17ß-HSD) and vitellogenin (Vg). Together, these results support a role for MroPK in regulating ovarian maturation via steroidogenesis.


Assuntos
Decápodes , Neuropeptídeos , Palaemonidae , Animais , Decápodes/fisiologia , Água Doce , Neuropeptídeos/metabolismo , Palaemonidae/genética
3.
PeerJ ; 10: e12980, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35194532

RESUMO

Transformer 2 (tra 2) and fruitless (fru) genes have been proven to play a key role in sex determination pathways in many Arthropods, including insects and crustaceans. In this study, a paralog of P. monodon tra 2 (Pmtra 2), P. monodon ovarian associated transformer 2 (PmOvtra 2) and 2 isoforms of P. monodon fruitless-like gene (Pmfru-1 and Pmfru-2) were identified and characterized. The full cDNA sequence of PmOvtra 2 consisted of 1,774 bp with the longest open reading frame (ORF) of 744 bp encoding for 247 amino acids. The PmOvtra 2 exhibited a predicted RNA-recognition motif (RRM) domain and two arginine-serine (RS) regions, suggesting its function in RNA splicing. The full cDNA sequence of Pmfru-1 consisted of 1,306 bp with 1,182 bp ORF encoding for 393 amino acids, whereas the full cDNA sequence of Pmfru-2 consisted of 1,858 bp with 1,437 bp ORF encoding 478 amino acids. The deduced amino acid sequences of Pmfru-1 and Pmfru-2 exhibited highly conserved domains of Fru proteins, including Broad-complex, Tramtrack and Bric-a-brac (BTB), and zinc finger (ZF) domains. In addition, Pmfru-1 and Pmfru-2 were suggestively originated from the same single genomic locus by genomic sequence analysis. Specifically, Pmfru pre-mRNA was alternatively spliced for Pmfru-1 and Pmfru-2 to include mutually exclusive exon 7 and exon 6, respectively. Temporal and spatial expression of PmOvtra 2, Pmfru-1, and Pmfru-2 were also investigated by qPCR. The results showed that all were expressed in early developmental stages with undifferentiated gonads starting from nauplius until postlarvae. The expression of PmOvtra 2 started at nauplius stage and gradually increased from mysis to postlarvae (PL) 1. However, the expression of Pmfru-1 was low at the nauplii stage and slightly increased from protozoea to PL5, whereas the expression of Pmfru-2 maintained a low level from nauplius to mysis and then gradually increased at the PL stages. Expressions of PmOvtra 2, Pmfru-1, and Pmfru-2 were detected in various tissues including nervous tissue, gill, heart, hepatopancreas, gut, and gonads. Interestingly, the sexually dimorphic expression of PmOvtra 2, Pmfru-1, and Pmfru-2 was demonstrated in fully developed gonads in which the ovary showed significantly higher expressions than the testis. The great difference in the expression pattern of PmOvtra 2, Pmfru-1, and Pmfru-2 in the ovary and testis suggested their roles in the female sex determination in P. monodon.


Assuntos
Penaeidae , Feminino , Masculino , Animais , Sequência de Bases , Penaeidae/genética , DNA Complementar/genética , Sequência de Aminoácidos , Aminoácidos/genética
4.
J Comp Neurol ; 530(4): 729-755, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34545567

RESUMO

Neuropeptide F (NPF) plays critical roles in controlling the feeding and reproduction of prawns. In the present study, we investigated changes in the expression levels of Macrobrachium rosenbergii neuropeptide F (MrNPF), and its neuroanatomical distribution in eyestalk (ES), brain (BR), subesophageal ganglion (SEG), thoracic ganglia (TG), and abdominal ganglia (AG), during the ovarian cycle of female prawn. By qRT-PCR, the amount of MrNPF transcripts exhibited a gradual increase in the ES, BR, and combined SEG and TG from stages I and II, to reach a maximum level at stage III, and slightly declined at stage IV, respectively. The highest to lowest expression levels were detected in combined SEG and TG, BR, ES, and AG, respectively. MrNPF immunolabeling was observed in several neuronal clusters, associated fibers, and neuropils of these central nervous system (CNS) tissues. MrNPF-ir was more intense in neurons and neuropils of SEG and TG than those found in other parts of the CNS. The number of MrNPF-ir neurons and intensity of MrNPF-ir were higher in the ES, BR, SEG, and TG at the late stages than those at the early stages of the ovarian cycle, while those in AG exhibited insignificant change. Taken together, there is a correlation between changes in the neuroanatomical distribution of MrNPF and stages of the ovarian cycle, implying that MrNPF may be an important neuropeptide that integrates sensory stimuli, including photo-, chemo-, and gustatory receptions, to control feeding and reproduction, particularly ovarian development, of this female prawn, M. rosenbergii.


Assuntos
Neuropeptídeos , Palaemonidae , Animais , Sistema Nervoso Central/metabolismo , Feminino , Água Doce , Ciclo Menstrual , Neuropeptídeos/metabolismo , Palaemonidae/metabolismo
5.
Front Endocrinol (Lausanne) ; 12: 760538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867802

RESUMO

In this study, a novel Crustacean Hyperglycemic Hormone-type II gene (CHH-type II) was identified and biologically characterized in a shrimp, Penaeus monodon. Based on its structure and function, this gene was named P. monodon vitellogenesis-inhibiting hormone (PemVIH). The complete cDNA sequence of PemVIH consisted of 1,022 nt with an open reading frame (ORF) of 339 nt encoding a polypeptide of 112 amino acids. It was classified as a member of the CHH-type II family based on conserved cysteine residues, a characteristically positioned glycine residue, and the absence of CHH precursor-related peptide (CPRP) domain. The deduced mature PemVIH shared the highest sequence similarities with giant river prawn sinus gland peptide A. Unlike P. monodon gonad-inhibiting hormone (PemGIH), PemVIH was expressed only in the brain and ventral nerve cord, but not the eyestalks. Whole mount immunofluorescence using a newly generated PemVIH antiserum detected positive signals in neuronal cluster 9/11 and 17 of the brain, commissural ganglion (CoG), and neuronal clusters of ventral nerve cord. The presence of PemVIH-positive neurons in CoG, a part of stomatogastric nervous system, suggested a potential mechanism for crosstalk between nutritional and reproductive signaling. The role of PemVIH in vitellogenesis was evaluated using RNA interference technique. Temporal knockdown of PemVIH in female subadults resulted in a 3-fold increase in ovarian vitellogenin expression, suggesting an inhibitory role of PemVIH in vitellogenesis. This study provided novel insight into the control of vitellogenesis and additional strategies for improving ovarian maturation in P. monodon without the current harmful practice of eyestalk ablation.


Assuntos
Hormônios de Invertebrado/metabolismo , Ovário/metabolismo , Penaeidae/metabolismo , Vitelogênese/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/metabolismo , Clonagem Molecular/métodos , Feminino , Proteínas do Tecido Nervoso/metabolismo , Vitelogeninas/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-34004320

RESUMO

The authors recently reported the presence and distribution of oxytocin/vasopressin-like peptide in Portunus pelagicus as well as demonstrated its function to inhibit ovarian steroid release (Saetan et al., 2018). Here, the full-length receptor of this peptide, namely oxytocin/vasopressin-like peptide receptor (PpelOT/VP-like peptide receptor) is reported. The coding region of the PpelOT/VP-like peptide receptor contained 1497 bp which translationally corresponded to 499 amino acids. Sequence analysis revealed its seven transmembrane characteristics, with -two N-linked glycosylation residues located before the first transmembrane domain (TM I). The phylogenetic tree revealed that the PpelOT/VP-like peptide receptor was placed in the group of invertebrate OT/VP-like receptors, and was clearly distinguishable from the V1R, V2R and OTR of vertebrates. Also, this receptor gene transcript was detected in several organs of the blue swimming crab with highest abundance found in brain tissue. In situ hybridization exhibited its distribution in all neuronal clusters of the eyestalk, brain, ventral nerve cord (VNC), as well as in the ovary. Comparative gene expressions between this receptor and its corresponding peptide in immature and mature female crabs revealed no significant difference of the PpelOT/VP-like peptide receptor gene expression in the central nervous system (CNS) and ovary. In contrast, the PpelOT/VP-like peptide gene was shown to significantly express higher in the VNC of immature crabs and in the ovary of mature crabs. Changes in expression of this peptide gene, but not its receptor, might result in ovarian steroid release inhibition. However, the detailed mechanism of this peptide in reproduction regulation will be included in our further studies.


Assuntos
Braquiúros/fisiologia , Ocitocina/metabolismo , Receptores de Peptídeos/metabolismo , Receptores de Vasopressinas/fisiologia , Vasopressinas/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Feminino , Perfilação da Expressão Gênica , Ovário/metabolismo , Peptídeos/química , Filogenia , RNA Mensageiro/metabolismo , Receptores de Peptídeos/genética , Receptores de Vasopressinas/metabolismo
7.
Cytotechnology ; 73(2): 141-157, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33927472

RESUMO

The giant freshwater prawn Macrobrachium rosenbergii is one of the most important aquaculture species in Southeast Asia. In this study, in vitro culture of its hematopoietic tissue cells was achieved and characterized for use as a tool to study its pathogens that cause major farm losses. By transmission electron microscopy, the ultrastructure of the primary culture cells was similar to that of cells lining intact hematopoietic tissue lobes. Proliferating cell nuclear antigen (PCNA) (a marker for hematopoietic stem cell proliferation) was detected in some of the cultured cells by polymerase chain reaction (PCR) testing and flow cytometry. Using a specific staining method to detect phenoloxidase activity and using PCR to detect expression markers for semigranular and granular hemocytes (e.g., prophenoloxidase activating enzyme and prophenoloxidase) revealed that some of the primary cells were able to differentiate into mature hemocytes within 24 h. These results showed that some cells in the cultures were hematopoietic stem cells that could be used to study other interesting research topics (e.g. host pathogen interactions and development of an immortal hematopoietic stem cell line).

8.
J Fish Dis ; 44(8): 1053-1064, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33724491

RESUMO

Tilapia tilapinevirus or tilapia lake virus (TiLV) is an emerging virus that inflicts significant mortality on farmed tilapia globally. Previous studies reported detection of the virus in multiple organs of the infected fish; however, little is known about the in-depth localization of the virus in the central nervous system. Herein, we determined the distribution of TiLV in the entire brain of experimentally infected Nile tilapia. In situ hybridization (ISH) using TiLV-specific probes revealed that the virus was broadly distributed throughout the brain. The strongest positive signals were dominantly detected in the forebrain (responsible for learning, appetitive behaviour and attention) and the hindbrain (involved in controlling locomotion and basal physiology). The permissive cell zones for viral infection were observed mostly to be along the blood vessels and the ventricles. This indicates that the virus may productively enter into the brain through the circulatory system and widen broad regions, possibly through the cerebrospinal fluid along the ventricles, and subsequently induce the brain dysfunction. Understanding the pattern of viral localization in the brain may help elucidate the neurological disorders of the diseased fish. This study revealed the distribution of TiLV in the whole infected brain, providing new insights into fish-virus interactions and neuropathogenesis.


Assuntos
Encéfalo/virologia , Ciclídeos , Doenças dos Peixes/virologia , Infecções por Vírus de RNA/veterinária , Vírus de RNA/isolamento & purificação , Animais , Hibridização In Situ/veterinária , Infecções por Vírus de RNA/virologia
9.
Fish Shellfish Immunol ; 110: 10-22, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33383176

RESUMO

In crustacean, hemocytes are known as crucial components of crustaceans' innate immunity against pathogens. Drastic hemocytes reduction during infectious disease is apparently related to disease severity and calls for a health status evaluation and aquaculture management. The molecular pathogenesis of hemocytes loss during bacterial infection was elucidated with VPAHPND challenged in M. rosenbergii. We report herein a correlation between hemocyte loss and the pathogenicity and aggressive immune response in hematopoietic tissues of moribund M. rosenbergii. In this study, adult freshwater prawn was administered an LC50 dose of VPAHPND; bacterial clearance ensued, and success was reached within 24 h. Hemocytes increased in survival, yet drastically decreased in moribund prawn. Pathological analysis of hematopoietic tissue of moribund prawn showed apparent abnormal signs, including the presence of bacteria, a small number of mitotic cells, cellular swelling, loosening of connective tissue, and karyorrhectic nuclei cells. A significant upregulation of a core apoptotic machinery gene, caspase-3, was detected in hematopoietic tissue of moribund shrimp, but not in those of Escherichia coli DH5α (non-pathogenic bacteria) and VPAHPND survival prawn. The highest level was found in the moribund group, which confirms the occurrence of apoptosis in this hematopoietic tissue. Further, our results suggest that hematopoietic tissue damage may arise from inflammation triggered by an aggressive immune response. Immune activation was indicated by the comparison of immune-related gene expression between controls, E. coli (DH5α)-infected (non-pathogenic), and VPAHPND-infected survival groups with moribund prawn. RT-PCR revealed a significant upregulation of all genes in hematopoietic tissues and hemocytes within 6-12 h and declined by 24 h. This evident related to the almost VPAHPND are clearance in survival and E. coli (DH5α) challenged group in contrast with drastic high expression was determined in moribund group. We conclude that a reduction of renewing circulating hemocytes in fatally VPAHPND-infected prawn was caused by an acute self-destructive immune response by hematopoietic cells.


Assuntos
Bactérias/patogenicidade , Expressão Gênica/imunologia , Sistema Hematopoético/imunologia , Imunidade Inata/genética , Palaemonidae/imunologia , Vibrio parahaemolyticus/fisiologia , Animais , Sistema Hematopoético/microbiologia , Sistema Hematopoético/patologia , Hemócitos/imunologia , Homeostase , Palaemonidae/microbiologia , Virulência
10.
Anim Reprod Sci ; 210: 106198, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31635776

RESUMO

Insulin-like androgenic gland hormone (IAG) controls development of primary and secondary male sex-characteristics in decapod crustaceans. In male giant freshwater prawns, Macrobrachium rosenbergii, the IAG concentration correlates with male reproductive status and aggressiveness. When female prawns are co-cultured with males this can result in male size variations while this variation does not occur when males are cultured in monosex conditions. It was hypothesized that pheromone-like factors from female prawns may affect the abundance of IAG mRNA and protein in co-cultured males which would affect the pattern of sexual maturation of these males. In the present study, late premolt to postmolt females co-cultured with males for 7 days had a greater abundance of MrIAG mRNA transcript in all male phenotypes as well as for the gonad-somatic indexes (GSI). The abundance of MrIAG mRNA gradually increased from days 1 to 7 and using Western blot procedures MrIAG protein also increased in a similar pattern. Furthermore, with use of BrdU labeling, there was an increased cell proliferation in the spermatogenic zone of testicular tubules and in the spermatic duct epithelium during the 1 to 7 day co-culture period when there were increases in MrIAG mRNA and protein. In contrast, these effects were negated if short lateral antennules of males were ablated. Thus, results of the present study provide evidence that there might be female-molting factors which function as important regulators of androgenic gland function and gonadal maturation that were perceived by males via their short lateral antennules which are the olfactory organs.


Assuntos
Criação de Animais Domésticos , Hormônios/metabolismo , Muda/fisiologia , Palaemonidae/fisiologia , Receptores Odorantes/fisiologia , Animais , Feminino , Masculino , Maturidade Sexual
11.
J Exp Biol ; 222(Pt 10)2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31028105

RESUMO

Unlike that of vertebrates, the penaeid shrimp stomach is of ectodermic origin and is thus covered by a cuticle that is sloughed upon molting. It is composed of two chambers, here called the anterior and posterior stomach chambers, ASC and PSC, respectively. The PSC contains a filtration structure variously called a pyloric filter, filter press, gastric filter or gastric sieve (GS), and the last of these will be used here. The GS resembles an elongated, inverted-V, dome-like, chitinous structure with a midline ridge that is integral to the ventral base of the PSC. The dome surface is covered with a carpet-like layer of minute, comb-like setae bearing laterally branching setulae. This carpet serves as a selective filter that excludes large partially digested food particles but allows smaller particles and soluble materials to enter hepatopancreatic ducts that conduct them into the shrimp hepatopancreas (HP), where further digestion and absorption of nutrients takes place. Although the GS function is well known, its exclusion limit for particulate material has not been clearly defined. Using histological and ultra-structure analysis, we show that the GS sieve pore diameter is approximately 0.2-0.7 µm in size, indicating a size exclusion limit of substantially less than 1 µm. Using fluorescent microbeads, we show that particles of 1 µm diameter could not pass through the GS but that particles of 0.1 µm diameter did pass through to accumulate in longitudinal grooves and move on to the HP, where some were internalized by tubule epithelial cells. We found no significant difference in these sizes between the species Penaeus monodon and Penaeus vannamei or between juveniles and adults in P. vannamei This information will be of value for the design of particulate feed ingredients such as nutrients, therapeutic drugs and toxin-absorbing materials that may selectively target the stomach, intestine or HP of cultivated shrimp.


Assuntos
Nutrientes/metabolismo , Penaeidae/metabolismo , Animais , Microscopia Eletrônica de Varredura , Penaeidae/ultraestrutura , Estômago/ultraestrutura
12.
Fish Shellfish Immunol ; 88: 415-423, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30872029

RESUMO

The hematopoietic organ (HO) of the giant freshwater prawn Macrobrachium rosenbergii is a discrete, whitish mass located in the epigastric region of the cephalothorax, posterior to the brain. It is composed of hematopoietic cells arranged in a thick layer of numerous lobules that surround a central hemal sinus from which they are separated by a thin sheath. At the center of the sinus is the muscular cor frontale. The lobules extend radially outward from the sinus in three developmental zones. Basal Zone 1 nearest the sinus contains large hematopoietic stem cells with euchromatic nuclei that stain positive for proliferation cell nuclear antigen (PCNA). Zone 2 contains smaller, actively dividing cells as indicated by positive 5-bromo-20-deoxyuridine (BrdU) staining. Distal Zone 3 contains small, loosely packed cells with heterochromatic nuclei, many cytoplasmic granules and vesicles indicating that they will eventually differentiate into hemocytes and enter circulation. Three main arteries, namely the ophthalmic and the 2 branches of the antennary, connect the heart to the HO. Use of India ink and 0.1 µm fluorescent micro-beads injected into the heart revealed that the cor frontale could immediately remove foreign particles from hemolymph by filtration. Fluorescent beads were also detected in the hematopoietic tissue at 30 min after injection, indicating that it could be penetrated by foreign particles. However, the fluorescent signal completely disappeared from the whole HO after 4 h, indicating its role in removal of foreign particles. In conclusion, the present study demonstrated for the first time the detailed histological structures of the HO of M. rosenbergii and its relationship to hematopoiesis and removal of foreign particles from hemolymph.


Assuntos
Sistema Hematopoético/citologia , Sistema Hematopoético/imunologia , Palaemonidae/imunologia , Animais , Proteínas de Artrópodes/química , Células-Tronco Hematopoéticas , Hemócitos/imunologia , Hemolinfa , Palaemonidae/anatomia & histologia , Fagocitose , Antígeno Nuclear de Célula em Proliferação/química
13.
Acta Histochem ; 121(2): 143-150, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30497687

RESUMO

The mud crab, Scylla olivacea, is a high value economic marine animal in Thailand. However, collection of these crabs from natural habitat for local consumption and export has caused rapid population decline. Hence, aquaculture of this species is required and to this measure understanding of endocrine control of their reproduction must be understood. Egg laying hormone (ELH) is a neuropeptide synthesized by the bag cells (neurons) in the abdominal ganglia of Aplysia gastropods. It plays a critical role in controlling egg production and laying in gastropods, and its possible homolog (ELH-like peptide) was reported in the neural and ovarian tissues of prawns and recently in female reproductive tract of the blue swimming crab, Portunus pelagicus. In this study, we have studied the histology of the male reproductive tract in Scylla olivacea which are comprised of anterior testis, posterior testis, early proximal spermatic duct (ePSD), proximal spermatic duct (PSD), middle spermatic duct (MSD) and distal spermatic duct (DSD), by immunohistochemistry, detected an abalone ELH- immunoreactivity (aELH-ir) in epithelium of ducts in posterior testis and epithelium of all parts of spermatic duct. Furthermore, we could detect aELH-ir in neurons of cluster 9, 11, olfactory neuropil (ON) in the brain and in the small neurons located between the third and the fourth thoracic neuropils (T3-T4) and between the fourth and the fifth thoracic neuropils (T4-T5) of thoracic ganglia. Thus, the presence of aELH in male S. olivacea was designated the role of female egg laying behavior in the male mud crab.


Assuntos
Braquiúros/metabolismo , Sistema Nervoso Central/metabolismo , Hormônios de Invertebrado/metabolismo , Hormônios Peptídicos/metabolismo , Reprodução/fisiologia , Testículo/metabolismo , Animais , Gastrópodes/metabolismo , Imuno-Histoquímica/métodos , Masculino , Neurônios/metabolismo
14.
Acta Histochem ; 121(2): 156-163, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30558912

RESUMO

The giant freshwater prawn, Macrobrachium rosenbergii, is an important aquaculture species. A better understanding of the molecular components of reproduction in this species would help to advance the prawn production. In the present study, we demonstrated the presence of an egg laying hormone (ELH)-like peptide in the male reproductive system. First, an antibody to the abalone (a)ELH was generated, and by Western blot it was shown to specifically bound to a protein from the male M. rosenbergii reproductive tissues with a similar size to molluscan ELH. This aELH-like peptide was localized in spermatogonia in the testes of all three male morphotypes: blue claw, orange claw and small males. Moreover, the aELH-like peptide was detected in the epithelium of the spermatic duct and its associated smooth muscle cell layers and on the outer surface of spermatozoa. As well, the aELH-like peptide was detected in the spermatophore located in the female thelycum at 4-6 h post-mating, indicating that it was transferred to the female during copulation. Taken together, we suggest that this aELH-like peptide could be as a male inducing factor that helped to accelerate female spawning. Liquid chromatography of crude extracts and immunoblot analysis suggested that the aELH-like peptide could be further purified for ultimate characterization.


Assuntos
Genitália Masculina/metabolismo , Palaemonidae/metabolismo , Hormônios Peptídicos/metabolismo , Espermatozoides/metabolismo , Animais , Água Doce , Masculino , Testículo
16.
Invert Neurosci ; 18(2): 5, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29560546

RESUMO

The giant freshwater prawn, Macrobrachium rosenbergii, is an economically important crustacean species which has also been extensively used as a model in neuroscience research. The crustacean central nervous system is a highly complex structure, especially the brain. However, little information is available on the brain structure, especially the three-dimensional organization. In this study, we demonstrated the three-dimensional structure and histology of the brain of M. rosenbergii together with the distribution of serotonin (5-HT) in the brain and ovary as well as its effects on ovarian steroidogenesis. The brain of M. rosenbergii consists of three parts: protocerebrum, deutocerebrum and tritocerebrum. Histologically, protocerebrum comprises of neuronal clusters 6-8 and prominent anterior and posterior medial protocerebral neuropils (AMPN/PMPN). The protocerebrum is connected posteriorly to the deutocerebrum which consists of neuronal clusters 9-13, medial antenna I neuropil, a paired lateral antenna I neuropils and olfactory neuropils (ON). Tritocerebrum comprises of neuronal clusters 14-17 with prominent pairs of antenna II (AnN), tegumentary and columnar neuropils (CN). All neuronal clusters are paired structures except numbers 7, 13 and 17 which are single clusters located at the median zone. These neuronal clusters and neuropils are clearly shown in three-dimensional structure of the brain. 5-HT immunoreactivity (-ir) was mostly detected in the medium-sized neurons and neuronal fibers of clusters 6/7, 8, 9, 10 and 14/15 and in many neuropils of the brain including anterior/posterior medial protocerebral neuropils (AMPN/PMPN), protocerebral tract, protocerebral bridge, central body, olfactory neuropil (ON), antennal II neuropil (Ann) and columnar neuropil (CN). In the ovary, the 5-HT-ir was light in the oocyte step 1(Oc1) and very intense in Oc2-Oc4. Using an in vitro assay of an explant of mature ovary, it was shown that 5-HT was able to enhance ovarian estradiol-17ß (E2) and progesterone (P4) secretions. We suggest that 5-HT is specifically localized in specific brain areas and ovary of this prawn and it plays a pivotal role in ovarian maturation via the induction of female sex steroid secretions, in turn these steroids may enhance vitellogenesis resulting in oocyte growth and maturation.


Assuntos
Encéfalo/metabolismo , Água Doce , Ovário/metabolismo , Serotonina/metabolismo , Esteroides/metabolismo , Animais , Feminino , Neurônios/metabolismo , Neurópilo/metabolismo , Ovário/efeitos dos fármacos , Serotonina/farmacologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-29382539

RESUMO

This study was aimed to characterize the full length of mRNA of oxytocin/vasopressin (OT/VP)-like mRNA in female Portunus pelagicus (PpelOT/VP-like mRNA) using a partial PpelOT/VP-like sequence obtained previously in our transcriptome analysis (Saetan, 2014) to construct the primers. The PpelOT/VP-like mRNA was 626 bp long and it encoded the preprohormones containing 158 amino acids. This preprohormone consisted of a signal peptide, an active nonapeptide (CFITNCPPG) followed by the dibasic cleavage site (GKR), and the neurophysin domain. Sequence alignment of the PpelOT/VP-like peptide with those of other animals revealed strong molecular conservation. Phylogenetic analysis of encoded proteins revealed that the PpelOT/VP-like peptide was clustered within the group of crustacean OT/VP-like peptide. Analysis by RT-PCR revealed the expression of mRNA transcripts in the eyestalk, brain, ventral nerve cord (VNC), ovary, intestine and gill. The in situ hybridization demonstrated the cellular localizations of the transcripts in the central nervous system (CNS) and ovary tissues. In the eyestalk, the mRNA expression was observed in the neuronal clusters 1-5 but not in the sinus gland complex. In the brain and the VNC, the transcripts were detected in all neuronal clusters but not in the glial cell. In the ovary, the transcripts were found in all stages of oocytes (Oc1, Oc2, Oc3, and Oc4). In addition, synthetic PpelOT/VP-like peptide could inhibit steroid release from the ovary. The knowledge gained from this study will provide more understanding on neuro-endocrinological controls in this crab species.


Assuntos
Crustáceos/metabolismo , Hormônios Esteroides Gonadais/metabolismo , Ovário/metabolismo , Ocitocina/genética , RNA Mensageiro/genética , Vasopressinas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Nervoso Central/metabolismo , Clonagem Molecular , Crustáceos/genética , Feminino , Hibridização In Situ , Filogenia , Homologia de Sequência de Aminoácidos , Natação , Distribuição Tecidual , Transcriptoma
18.
Acta Histochem ; 119(7): 701-707, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28919178

RESUMO

Recently, the neuronal classification of the ivory shell Spotted Babylon, Babylonia areolata, was readily demonstrated. Regarding its importance as marine economic molluscan species, the attempt to understand the neuroendocrine regulation is necessary. This study firstly demonstrated the neurosecretory cells as well as the existence and distribution of the egg-laying hormone (ELH)-like peptide in the central nervous system (CNS) and ovary of the B. areolata. The neurosecretory cell was characterized by the cytoplasmic purple dot-like structure as stained by the Gomori's paraldehyde fuchsin. Using the anti-abalone (a) ELH, we detected the aELH-like-peptide in neurons (Nr) and neurosecretory cells (Ns) of all ganglia including the cerebral, pleural, parietal, pedal and buccal ganglia. The aELH-like peptide was also present in the neuropil of each. It was noted that not all Ns presented the aELH-like peptide. In the ovary, the aELH-like peptide was slightly detected in early developing oocytes and strongly detected in late developing oocytes and follicular cells. This study firstly reported the evidence of ELH-like peptide in the CNS and ovary of the B. areolata. The molecular cloning as well as to investigate the function of ELH in this species is needed as it will be beneficial for future applications in aquaculture.


Assuntos
Hormônios de Invertebrado/metabolismo , Moluscos/metabolismo , Animais , Western Blotting , Sistema Nervoso Central/metabolismo , Feminino , Imuno-Histoquímica , Ovário/metabolismo
19.
PLoS One ; 12(6): e0177064, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28662025

RESUMO

In decapod crustaceans, the antennal gland (AnG) is a major primary source of externally secreted biomolecules, and some may act as pheromones that play a major role in aquatic animal communication. In aquatic crustaceans, sex pheromones regulate reproductive behaviours, yet they remain largely unidentified besides the N-acetylglucosamine-1,5-lactone (NAGL) that stimulates male to female attraction. In this study, we used an AnG transcriptome of the female giant freshwater prawn (Macrobrachium rosenbergii) to predict the secretion of 226 proteins, including the most abundantly expressed transcripts encoding the Spaetzle protein, a serine protease inhibitor, and an arthropodial cuticle protein AMP 8.1. A quantitative proteome analysis of the female AnG at intermolt, premolt and postmolt, identified numerous proteins of different abundances, such as the hemocyanin subunit 1 that is most abundant at intermolt. We also show that hemocyanin subunit 1 is present within water surrounding females. Of those metabolites identified, we demonstrate that the NAGL and N-acetylglucosamine (NAG) can bind with high affinity to hemocyanin subunit 1. In summary, this study has revealed components of the female giant freshwater prawn AnG that are released and contribute to further research towards understanding crustacean conspecific signalling.


Assuntos
Crustáceos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Crustáceos/química , Crustáceos/metabolismo , Espectrometria de Massas , Proteoma , Transcriptoma
20.
Cell Tissue Res ; 367(2): 181-195, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27957615

RESUMO

We previously analyzed the central nervous system (CNS) transcriptome and found three isotypes of long neuropeptide F (MrNPF-I, -II, -III) and four isoforms of short NPF (sMrNPF) in the giant freshwater prawn, Macrobrachium rosenbergii. We now validate the complete sequences of the MrNPF-I and -II precursor proteins, which show high similarity (91-95 %) to NPFs of the penaeus shrimp (PsNPF). MrNPF-I and -II precursors share 71 % amino acid identity, whereas the mature 32-amino-acid MrNPF-I and 69-amino-acid MrNPF-II are identical, except for a 37-amino-acid insert within the middle part of the latter. Both mature MrNPFs are almost identical to PsNPF-I and -II except for four amino acids at the mid-region of the peptides. Reverse transcription plus the polymerase chain reaction revealed that transripts of MrNPF-I and -II were expressed in various parts of CNS including the eyestalk, brain and thoracic and abdominal ganglia, with the highest expression occurring in the brain and thoracic ganglia and with MrNPF-I showing five- to seven-fold higher expression than MrNPF-II. These peptides were also expressed in the midgut hindgut, and hepatopancreas, with MrNPF-I expression in the former two organs being at the same level as that in the brain and thoracic ganglia and about 4-fold higher than NPF-II. The expression of NPFs was also detected in the testes and spermatic duct but appeared much weaker in the latter. Other tissues that also expressed a considerable amount of NPF-I included the hematopoeitic tissue, heart and muscle. By immunohistochemistry, we detected MrNPFs in neurons of clusters 2, 3 and 4 and neuropils ME, MT and SG of the optic ganglia, neurons in cluster 6 and neuropils AMPN, PMPN, PT, PB and CB of the medial protocerebrum, neurons in clusters 9 and 11 and neurophils ON and OGTN of the deutocerebrum and neurons in clusters 14, 15 and 16 and neuropils TN and AnN of the tritocerebrum. Because of their high degree of conservation and strong and wide-spread expression in tissues other than CNS, we believe that, in addition to being a neuromodulator in controlling feeding, MrNPFs also play critical roles in tissue homeostasis. This should be further explored.


Assuntos
Água Doce , Neuropeptídeos/metabolismo , Palaemonidae/metabolismo , Sequência de Aminoácidos , Animais , Especificidade de Anticorpos , Sequência de Bases , Encéfalo , Clonagem Molecular , DNA Complementar/genética , Olho , Imunofluorescência , Perfilação da Expressão Gênica , Imuno-Histoquímica , Masculino , Neuropeptídeos/química , Neuropeptídeos/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Análise de Sequência de DNA , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...