Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 21657, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34737324

RESUMO

Cell lines are widely used in research and for diagnostic tests and are often shared between laboratories. Lack of cell line authentication can result in the use of contaminated or misidentified cell lines, potentially affecting the results from research and diagnostic activities. Cell line authentication and contamination detection based on metagenomic high-throughput sequencing (HTS) was tested on DNA and RNA from 63 cell lines available at the Canadian Food Inspection Agency's National Centre for Foreign Animal Disease. Through sequence comparison of the cytochrome c oxidase subunit 1 (COX1) gene, the species identity of 53 cell lines was confirmed, and eight cell lines were found to show a greater pairwise nucleotide identity in the COX1 sequence of a different species within the same expected genus. Two cell lines, LFBK-αvß6 and SCP-HS, were determined to be composed of cells from a different species and genus. Mycoplasma contamination was not detected in any cell lines. However, several expected and unexpected viral sequences were detected, including part of the classical swine fever virus genome in the IB-RS-2 Clone D10 cell line. Metagenomics-based HTS is a useful laboratory QA tool for cell line authentication and contamination detection that should be conducted regularly.


Assuntos
Autenticação de Linhagem Celular/métodos , Linhagem Celular/classificação , Ciclo-Oxigenase 1/genética , Animais , Genoma/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Mycoplasma/genética , Reação em Cadeia da Polimerase/métodos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA