Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 13(1): 2296712, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38170159

RESUMO

Interferon regulatory factor 4 (IRF4) is a master transcription factor that regulates T helper cell (Th) differentiation. It interacts with the Basic leucine zipper transcription factor, ATF-like (BATF), depletion of which in CD4+ T cells abrogates acute graft-versus-host disease (aGVHD)-induced colitis. Here, we investigated the immune-regulatory role of Irf4 in a mouse model of MHC-mismatched bone marrow transplantation. We found that recipients of allogenic Irf4-/- CD4+ T cells developed less GVHD-related symptoms. Transcriptome analysis of re-isolated donor Irf4-/- CD4+ T helper (Th) cells, revealed gene expression profiles consistent with loss of effector T helper cell signatures and enrichment of a regulatory T cell (Treg) gene expression signature. In line with these findings, we observed a high expression of the transcription factor BTB and CNC homolog 2; (BACH2) in Irf4-/- T cells, which is associated with the formation of Treg cells and suppression of Th subset differentiation. We also found an association between BACH2 expression and Treg differentiation in patients with intestinal GVHD. Finally, our results indicate that IRF4 and BACH2 act as counterparts in Th cell polarization and immune homeostasis during GVHD. In conclusion, targeting the BACH2/IRF4-axis could help to develop novel therapeutic approaches against GVHD.


Assuntos
Colite , Doença Enxerto-Hospedeiro , Camundongos , Animais , Humanos , Colite/induzido quimicamente , Colite/genética , Linfócitos T Reguladores/metabolismo , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Doença Enxerto-Hospedeiro/genética , Doença Enxerto-Hospedeiro/metabolismo
2.
PLoS Negl Trop Dis ; 18(1): e0011868, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38175836

RESUMO

BACKGROUND: While much progress has been made in the control and elimination of onchocerciasis across Africa, the extent to which vector migration might confound progress towards elimination or result in re-establishment of endemism in areas where transmission has been eliminated remains unclear. In Northern Ethiopia, Metema and Metekel-two foci located near the Sudan border-exhibit continuing transmission. While progress towards elimination has been faster in Metema, there remains a problematic hotspot of transmission. Whether migration from Metekel contributes to this is currently unknown. METHODOLOGY/PRINCIPLE FINDINGS: To assess the role of vector migration from Metekel into Metema, we present a population genomics study of 151 adult female vectors using 47,638 RADseq markers and mtDNA CoI sequencing. From additional cytotaxonomy data we identified a new cytoform in Metema, closely related to S. damnosum s.str, here called the Gondar form. RADseq data strongly indicate the existence of two distinctly differentiated clusters within S. damnosum s.l.: one genotypic cluster found only in Metema, and the second found predominantly in Metekel. Because blackflies from both clusters were found in sympatry (in all four collection sites in Metema), but hybrid genotypes were not detected, there may be reproductive barriers preventing interbreeding. The dominant genotype in Metema was not found in Metekel while the dominant genotype in Metekel was found in Metema, indicating that (at the time of sampling) migration is primarily unidirectional, with flies moving from Metekel to Metema. There was strong differentiation between clusters but little genetic differentiation within clusters, suggesting migration and gene flow of flies within the same genetic cluster are sufficient to prevent genetic divergence between sites. CONCLUSIONS/SIGNIFICANCE: Our results confirm that Metekel and Metema represent different transmission foci, but also indicate a northward movement of vectors between foci that may have epidemiological importance, although its significance requires further study.


Assuntos
Oncocercose , Simuliidae , Animais , Feminino , Oncocercose/epidemiologia , Simuliidae/genética , Etiópia , Insetos Vetores , Cromossomos
3.
Cell Rep ; 42(10): 113230, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37815917

RESUMO

T cell receptor (TCR) Vγ4-expressing γδ T cells comprise interferon γ (IFNγ)- and interleukin-17 (IL-17)-producing effector subsets, with a preference for IL-17 effector fate decisions during early ontogeny. The existence of adult-thymus-derived IL-17+ T cells (γδ17) remains controversial. Here, we use a mouse model in which T cells are generated exclusively in the adult thymus and employ single-cell chromatin state analysis to study their development. We identify adult-thymus-derived Vγ4 T cells that have all the molecular programs to become IL-17 producers. However, they have reduced IL-17 production capabilities and rarely reach the periphery. Moreover, this study provides high-resolution profiles of Vγ4 T cells in the adult thymus and lymph nodes and identifies Zeb1 as a potential γδ17 cell regulator. Together, this study provides valuable insights into the developmental traits of Vγ4 T cells during adulthood and supports the idea of age-specific signals required for thymic export and/or peripheral maturation of γδ17 cells.


Assuntos
Interleucina-17 , Receptores de Antígenos de Linfócitos T gama-delta , Camundongos , Animais , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Camundongos Endogâmicos C57BL , Linfócitos T , Timo , Subpopulações de Linfócitos T , Proteínas Proto-Oncogênicas c-maf
4.
Aging Cell ; 22(8): e13870, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37221658

RESUMO

Age-related thymus involution results in decreased T-cell production, contributing to increased susceptibility to pathogens and reduced vaccine responsiveness. Elucidating mechanisms underlying thymus involution will inform strategies to restore thymopoiesis with age. The thymus is colonized by circulating bone marrow (BM)-derived thymus seeding progenitors (TSPs) that differentiate into early T-cell progenitors (ETPs). We find that ETP cellularity declines as early as 3 months (3MO) of age in mice. This initial ETP reduction could reflect changes in thymic stromal niches and/or pre-thymic progenitors. Using a multicongenic progenitor transfer approach, we demonstrate that the number of functional TSP/ETP niches does not diminish with age. Instead, the number of pre-thymic lymphoid progenitors in the BM and blood is substantially reduced by 3MO, although their intrinsic ability to seed and differentiate in the thymus is maintained. Additionally, Notch signaling in BM lymphoid progenitors and in ETPs diminishes by 3MO, suggesting reduced niche quality in the BM and thymus contribute to the early decline in ETPs. Together, these findings indicate that diminished BM lymphopoiesis and thymic stromal support contribute to an initial reduction in ETPs in young adulthood, setting the stage for progressive age-associated thymus involution.


Assuntos
Medula Óssea , Linfócitos T , Camundongos , Animais , Timo , Transdução de Sinais , Camundongos Endogâmicos C57BL , Diferenciação Celular
5.
PLoS Negl Trop Dis ; 17(4): e0010862, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043542

RESUMO

Phlebotomine sand flies are of global significance as important vectors of human disease, transmitting bacterial, viral, and protozoan pathogens, including the kinetoplastid parasites of the genus Leishmania, the causative agents of devastating diseases collectively termed leishmaniasis. More than 40 pathogenic Leishmania species are transmitted to humans by approximately 35 sand fly species in 98 countries with hundreds of millions of people at risk around the world. No approved efficacious vaccine exists for leishmaniasis and available therapeutic drugs are either toxic and/or expensive, or the parasites are becoming resistant to the more recently developed drugs. Therefore, sand fly and/or reservoir control are currently the most effective strategies to break transmission. To better understand the biology of sand flies, including the mechanisms involved in their vectorial capacity, insecticide resistance, and population structures we sequenced the genomes of two geographically widespread and important sand fly vector species: Phlebotomus papatasi, a vector of Leishmania parasites that cause cutaneous leishmaniasis, (distributed in Europe, the Middle East and North Africa) and Lutzomyia longipalpis, a vector of Leishmania parasites that cause visceral leishmaniasis (distributed across Central and South America). We categorized and curated genes involved in processes important to their roles as disease vectors, including chemosensation, blood feeding, circadian rhythm, immunity, and detoxification, as well as mobile genetic elements. We also defined gene orthology and observed micro-synteny among the genomes. Finally, we present the genetic diversity and population structure of these species in their respective geographical areas. These genomes will be a foundation on which to base future efforts to prevent vector-borne transmission of Leishmania parasites.


Assuntos
Leishmania , Leishmaniose Cutânea , Phlebotomus , Psychodidae , Animais , Humanos , Phlebotomus/parasitologia , Psychodidae/parasitologia , Leishmania/genética , Genômica
6.
Cell Mol Life Sci ; 79(8): 443, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867177

RESUMO

MiR-181 expression levels increased in hepatocellular carcinoma (HCC) compared to non-cancerous tissues. MiR-181 has been widely reported as a possible driver of tumourigenesis but also acts as a tumour suppressor. In addition, the miR-181 family regulates the development and function of immune and vascular cells, which play vital roles in the progression of tumours. More complicatedly, many genes have been identified as miR-181 targets to mediate the effects of miR-181. However, the role of miR-181 in the development of primary tumours remains largely unexplored. We aimed to examine the function of miR-181 and its vital mediators in the progression of diethylnitrosamine-induced primary liver cancers in mice. The size of liver tumours was significantly reduced by 90% in global (GKO) or liver-specific (LKO) 181ab1 knockout mice but not in hematopoietic and endothelial lineage-specific knockout mice, compared to WT mice. In addition, the number of tumours was significantly reduced by 50% in GKO mice. Whole-genome RNA-seq analysis and immunohistochemistry showed that epithelial-mesenchymal transition was partially reversed in GKO tumours compared to WT tumours. The expression of CBX7, a confirmed miR-181 target, was up-regulated in GKO compared to WT tumours. Stable CBX7 expression was achieved with an AAV/Transposase Hybrid-Vector System and up-regulated CBX7 expression inhibited liver tumour progression in WT mice. Hepatic CBX7 deletion restored the progression of LKO liver tumours. MiR-181a expression was the lowest and CBX7 expression the highest in iClust2 and 3 subclasses of human HCC compared to iClust1. Gene expression profiles of GKO tumours overlapped with low-proliferative peri-portal-type HCCs. Liver-specific loss of miR-181ab1 inhibited primary liver tumour progression via up-regulating CBX7 expression, but tumour induction requires both hepatic and non-hepatic miR-181. Also, miR-181ab1-deficient liver tumours may resemble low-proliferative periportal-type human HCC. miR-181 was increased with liver tumour growth. More miR-181, darker colour and higher shape. CBX7 was very low in pericentral hepatocytes, increased in early liver tumours, but reduced in advanced liver tumours. Its levels were maintained in miR-181 KO liver tumours. In tumours (T), brown (darker is more) represents miR-181, the blue circle (thicker is more) represents CBX7.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Regulação para Cima/genética
7.
Immunol Lett ; 247: 1-12, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35609352

RESUMO

T-cell development in the thymus is dependent on the continual colonization by bone-marrow derived progenitor cells. Once inside the thymus, progenitors undergo a series of well-defined differentiation events, including lineage commitment, somatic recombination of T-cell receptor (TCR) gene loci, and selection of clones with productively recombined yet non-autoreactive TCRs. Cell-cell interactions, cytokine signals, transcriptional as well as epigenetic programs controlling T-cell development are comparatively well-characterized. In contrast, the contribution of post-transcriptional control and its underlying mechanisms remain largely elusive. Here, we summarize recent advances in our understanding of post-transcriptional regulation of T-cell development, focussing on microRNAs (miRNAs) and RNA-binding proteins (RBPs). We highlight the current challenges, and how they can potentially be overcome with evolving sophisticated methodology to enable a thorough mechanistic understanding and decipher the regulatory networks operating in the gene expression programs of T-cell development.


Assuntos
Regulação da Expressão Gênica , MicroRNAs , Diferenciação Celular/genética , MicroRNAs/genética , Receptores de Antígenos de Linfócitos T/genética , Linfócitos T/metabolismo , Timo/metabolismo
8.
Leukemia ; 35(12): 3561-3567, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33976371

RESUMO

Humanized mouse models have become increasingly valuable tools to study human hematopoiesis and infectious diseases. However, human T-cell differentiation remains inefficient. We generated mice expressing human interleukin-7 (IL-7), a critical growth and survival factor for T cells, under the control of murine IL-7 regulatory elements. After transfer of human cord blood-derived hematopoietic stem and progenitor cells, transgenic mice on the NSGW41 background, termed NSGW41hIL7, showed elevated and prolonged human cellularity in the thymus while maintaining physiological ratios of thymocyte subsets. As a consequence, numbers of functional human T cells in the periphery were increased without evidence for pathological lymphoproliferation or aberrant expansion of effector or memory-like T cells. We conclude that the novel NSGW41hIL7 strain represents an optimized mouse model for humanization to better understand human T-cell differentiation in vivo and to generate a human immune system with a better approximation of human lymphocyte ratios.


Assuntos
Sangue Fetal/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Interleucina-7/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/fisiologia , Sangue Fetal/citologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Humanos , Interleucina-7/genética , Camundongos , Camundongos Transgênicos , Especificidade de Órgãos , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/metabolismo
9.
Entropy (Basel) ; 23(4)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918050

RESUMO

The thymus hosts the development of a specific type of adaptive immune cells called T cells. T cells orchestrate the adaptive immune response through recognition of antigen by the highly variable T-cell receptor (TCR). T-cell development is a tightly coordinated process comprising lineage commitment, somatic recombination of Tcr gene loci and selection for functional, but non-self-reactive TCRs, all interspersed with massive proliferation and cell death. Thus, the thymus produces a pool of T cells throughout life capable of responding to virtually any exogenous attack while preserving the body through self-tolerance. The thymus has been of considerable interest to both immunologists and theoretical biologists due to its multi-scale quantitative properties, bridging molecular binding, population dynamics and polyclonal repertoire specificity. Here, we review experimental strategies aimed at revealing quantitative and dynamic properties of T-cell development and how they have been implemented in mathematical modeling strategies that were reported to help understand the flexible dynamics of the highly dividing and dying thymic cell populations. Furthermore, we summarize the current challenges to estimating in vivo cellular dynamics and to reaching a next-generation multi-scale picture of T-cell development.

10.
Sci Rep ; 10(1): 21438, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33293632

RESUMO

A network of gene regulatory factors such as transcription factors and microRNAs establish and maintain gene expression patterns during hematopoiesis. In this network, transcription factors regulate each other and are involved in regulatory loops with microRNAs. The microRNA cluster miR-17-92 is located within the MIR17HG gene and encodes six mature microRNAs. It is important for hematopoietic differentiation and plays a central role in malignant disease. However, the transcription factors downstream of miR-17-92 are largely elusive and the transcriptional regulation of miR-17-92 is not fully understood. Here we show that miR-17-92 forms a regulatory loop with the transcription factor TAL1. The miR-17-92 cluster inhibits expression of TAL1 and indirectly leads to decreased stability of the TAL1 transcriptional complex. We found that TAL1 and its heterodimerization partner E47 regulate miR-17-92 transcriptionally. Furthermore, miR-17-92 negatively influences erythroid differentiation, a process that depends on gene activation by the TAL1 complex. Our data give example of how transcription factor activity is fine-tuned during normal hematopoiesis. We postulate that disturbance of the regulatory loop between TAL1 and the miR-17-92 cluster could be an important step in cancer development and progression.


Assuntos
Células Eritroides/citologia , MicroRNAs/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Células HEK293 , Hematopoese , Humanos , Células Jurkat , Células K562 , Estabilidade Proteica , RNA Longo não Codificante , Proteína 1 de Leucemia Linfocítica Aguda de Células T/química , Fator 3 de Transcrição/metabolismo , Ativação Transcricional
11.
Front Immunol ; 11: 2185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013919

RESUMO

MicroRNAs (miRNAs) have emerged as critical posttranscriptional regulators of the immune system, including function and development of regulatory T (Treg) cells. Although this critical role has been firmly demonstrated through genetic models, key mechanisms of miRNA function in vivo remain elusive. Here, we review the role of miRNAs in Treg cell development and function. In particular, we focus on the question what the study of miRNAs in this context reveals about miRNA biology in general, including context-dependent function and the role of individual targets vs. complex co-targeting networks. In addition, we highlight potential technical pitfalls and state-of-the-art approaches to improve the mechanistic understanding of miRNA biology in a physiological context.


Assuntos
MicroRNAs/genética , Linfócitos T Reguladores/fisiologia , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Ativação Linfocitária/genética
12.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867301

RESUMO

The selection of T cells during intra-thymic d evelopment is crucial to obtain a functional and simultaneously not self-reactive peripheral T cell repertoire. However, selection is a complex process dependent on T cell receptor (TCR) thresholds that remain incompletely understood. In peripheral T cells, activation, clonal expansion, and contraction of the active T cell pool, as well as other processes depend on TCR signal strength. Members of the microRNA (miRNA) miR-181 family have been shown to be dynamically regulated during T cell development as well as dependent on the activation stage of T cells. Indeed, it has been shown that expression of miR-181a leads to the downregulation of multiple phosphatases, implicating miR-181a as ''rheostat'' of TCR signaling. Consistently, genetic models have revealed an essential role of miR-181a/b-1 for the generation of unconventional T cells as well as a function in tuning TCR sensitivity in peripheral T cells during aging. Here, we review these broad roles of miR-181 family members in T cell function via modulating TCR signal strength.


Assuntos
MicroRNAs/genética , Receptores de Antígenos de Linfócitos T/genética , Timo/imunologia , Humanos , Ativação Linfocitária , Monoéster Fosfórico Hidrolases/genética , Linfócitos T/metabolismo
13.
J Mol Med (Berl) ; 98(2): 309-320, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32002568

RESUMO

CD8+ T cells are key players in immunity against intracellular infections and tumors. The main cytokine associated with these protective responses is interferon-γ (IFN-γ), whose production is known to be regulated at the transcriptional level during CD8+ T cell differentiation. Here we found that microRNAs constitute a posttranscriptional brake to IFN-γ expression by CD8+ T cells, since the genetic interference with the Dicer processing machinery resulted in the overproduction of IFN-γ by both thymic and peripheral CD8+ T cells. Using a gene reporter mouse for IFN-γ locus activity, we compared the microRNA repertoires associated with the presence or absence of IFN-γ expression. This allowed us to identify a set of candidates, including miR-181a and miR-451, which were functionally tested in overexpression experiments using synthetic mimics in peripheral CD8+ T cell cultures. We found that miR-181a limits IFN-γ production by suppressing the expression of the transcription factor Id2, which in turn promotes the Ifng expression program. Importantly, upon MuHV-4 challenge, miR-181a-deficient mice showed a more vigorous IFN-γ+ CD8+ T cell response and were able to control viral infection significantly more efficiently than control mice. These data collectively establish a novel role for miR-181a in regulating IFN-γ-mediated effector CD8+ T cell responses in vitro and in vivo.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Interferon gama/imunologia , MicroRNAs/imunologia , Animais , Diferenciação Celular , Linhagem Celular , Cricetinae , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Rhadinovirus
14.
Cardiovasc Diabetol ; 19(1): 20, 2020 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32066445

RESUMO

BACKGROUND: Diabetes mellitus is characterized by chronic vascular inflammation leading to pathological expression of the thrombogenic full length (fl) tissue factor (TF) and its isoform alternatively-spliced (as) TF. Blood-borne TF promotes factor (F) Xa generation resulting in a pro-thrombotic state and cardiovascular complications. MicroRNA (miR)s impact gene expression on the post-transcriptional level and contribute to vascular homeostasis. Their distinct role in the control of the diabetes-related procoagulant state remains poorly understood. METHODS: In a cohort of patients with poorly controlled type 2 diabetes (n = 46) plasma levels of miR-181b were correlated with TF pathway activity and markers for vascular inflammation. In vitro, human microvascular endothelial cells (HMEC)-1 and human monocytes (THP-1) were transfected with miR-181b or anti-miR-181b and exposed to tumor necrosis factor (TNF) α or lipopolysaccharides (LPS). Expression of TF isoforms, vascular adhesion molecule (VCAM) 1 and nuclear factor (NF) κB nuclear translocation was assessed. Moreover, aortas, spleen, plasma, and bone marrow-derived macrophage (BMDM)s of mice carrying a deletion of the first miR-181b locus were analyzed with respect to TF expression and activity. RESULTS: In patients with type 2 diabetes, plasma miR-181b negatively correlated with the procoagulant state as evidenced by TF protein, TF activity, D-dimer levels as well as markers for vascular inflammation. In HMEC-1, miR-181b abrogated TNFα-induced expression of flTF, asTF, and VCAM1. These results were validated using the anti-miR-181b. Mechanistically, we confirmed a miR-181b-mediated inhibition of importin-α3 (KPNA4) leading to reduced nuclear translocation of the TF transcription factor NFκB. In THP-1, miR-181b reduced both TF isoforms and FXa generation in response to LPS due to targeting phosphatase and tensin homolog (PTEN), a principal inducer for TF in monocytes. Moreover, in miR-181-/- animals, we found that reduced levels of miR-181b were accompanied by increased TF, VCAM1, and KPNA4 expression in aortic tissue as well as increased TF and PTEN expression in spleen. Finally, BMDMs of miR-181-/- mice showed increased TF expression and FXa generation upon stimulation with LPS. CONCLUSIONS: miR-181b epigenetically controls the procoagulant state in diabetes. Reduced miR-181b levels contribute to increased thrombogenicity and may help to identify individuals at particular risk for thrombosis.


Assuntos
Coagulação Sanguínea , Diabetes Mellitus Tipo 2/complicações , Células Endoteliais/metabolismo , Inflamação/etiologia , MicroRNAs/metabolismo , Tromboplastina/metabolismo , Trombose/etiologia , Idoso , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Regulação para Baixo , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos Knockout , MicroRNAs/genética , Pessoa de Meia-Idade , NF-kappa B/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Células THP-1 , Tromboplastina/genética , Trombose/genética , Trombose/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , alfa Carioferinas/metabolismo
15.
Methods Mol Biol ; 2098: 299-305, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31792830

RESUMO

Mucosal-associated invariant T cells (MAIT) are abundant in humans, comprising up to 40% of liver T cells and 10% of peripheral blood T cells. However, understanding MAIT cell biology is hampered by the fact that they are fundamentally rare in standard laboratory mouse strains, such as C57BL/6. The discovery of MAIT cell ligands and recent advances in MR1-tetramer technology has provided a means for detecting murine MAIT cells, but low frequencies still hinder precise characterization. Here we describe how to accurately isolate rare MAIT cells from murine lymphocyte populations using MR1-tetramer technology combined with magnetic bead enrichment. Isolated MAIT cells can be used for downstream characterization or functional analysis.


Assuntos
Separação Imunomagnética/métodos , Células T Invariantes Associadas à Mucosa/imunologia , Células T Invariantes Associadas à Mucosa/metabolismo , Animais , Biomarcadores , Separação Celular/métodos , Imunofluorescência , Imuno-Histoquímica , Camundongos , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
16.
Front Immunol ; 10: 2520, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708931

RESUMO

Post-transcriptional gene regulation through microRNA (miRNA) has emerged as a major control mechanism of multiple biological processes, including development and function of T cells. T cells are vital components of the immune system, with conventional T cells playing a central role in adaptive immunity and unconventional T cells having additional functions reminiscent of both innate and adaptive immunity, such as involvement in stress responses and tissue homeostasis. Unconventional T cells encompass cells expressing semi-invariant T cell receptors (TCRs), such as invariant Natural Killer T (iNKT) and Mucosal-Associated Invariant T (MAIT) cells. Additionally, some T cells with diverse TCR repertoires, including γδT cells, intraepithelial lymphocytes (IEL) and regulatory T (Treg) cells, share some functional and/or developmental features with their semi-invariant unconventional counterparts. Unconventional T cells are particularly sensitive to disruption of miRNA function, both globally and on the individual miRNA level. Here, we review the role of miRNA in the development and function of unconventional T cells from an iNKT-centric point of view. The function of single miRNAs can provide important insights into shared and individual pathways for the formation of different unconventional T cell subsets.


Assuntos
Linfopoese/fisiologia , MicroRNAs/fisiologia , Subpopulações de Linfócitos T/fisiologia , Animais , Humanos
17.
J Clin Invest ; 129(12): 5108-5122, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31479431

RESUMO

The transcription factor B cell CLL/lymphoma 11B (BCL11B) is indispensable for T lineage development of lymphoid progenitors. Here, we show that chimeric antigen receptor (CAR) expression during early phases of ex vivo generation of lymphoid progenitors suppressed BCL11B, leading to suppression of T cell-associated gene expression and acquisition of NK cell-like properties. Upon adoptive transfer into hematopoietic stem cell transplant recipients, CAR-expressing lymphoid progenitors differentiated into CAR-induced killer (CARiK) cells that mediated potent antigen-directed antileukemic activity even across MHC barriers. CD28 and active immunoreceptor tyrosine-based activation motifs were critical for a functional CARiK phenotype. These results give important insights into differentiation of murine and human lymphoid progenitors driven by synthetic CAR transgene expression and encourage further evaluation of ex vivo-generated CARiK cells for targeted immunotherapy.


Assuntos
Antígenos CD28/metabolismo , Células Matadoras Naturais/citologia , Linfócitos/citologia , Receptores de Antígenos Quiméricos/metabolismo , Proteínas Repressoras/metabolismo , Linfócitos T/citologia , Proteínas Supressoras de Tumor/metabolismo , Animais , Antígenos CD19/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Separação Celular , Citotoxicidade Imunológica , Citometria de Fluxo , Transplante de Células-Tronco Hematopoéticas , Humanos , Imunoterapia , Imunoterapia Adotiva , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Engenharia de Proteínas , Células-Tronco/citologia , Transgenes
18.
Front Immunol ; 10: 497, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30936881

RESUMO

B-cell development and function depend on stage-specific signaling through the B-cell antigen receptor (BCR). Signaling and intracellular trafficking of the BCR are connected, but the molecular mechanisms of this link are incompletely understood. Here, we investigated the role of the endosomal adaptor protein and member of the LAMTOR/Ragulator complex LAMTOR2 (p14) in B-cell development. Efficient conditional deletion of LAMTOR2 at the pre-B1 stage using mb1-Cre mice resulted in complete developmental arrest. Deletion of LAMTOR2 using Cd19-Cre mice permitted analysis of residual B cells at later developmental stages, revealing that LAMTOR2 was critical for the generation and activation of mature B lymphocytes. Loss of LAMTOR2 resulted in aberrant BCR signaling due to delayed receptor internalization and endosomal trafficking. In conclusion, we identify LAMTOR2 as critical regulator of BCR trafficking and signaling that is essential for early B-cell development in mice.


Assuntos
Linfócitos B/imunologia , Endossomos/metabolismo , Proteínas/imunologia , Receptores de Antígenos de Linfócitos B/imunologia , Animais , Linfócitos B/ultraestrutura , Sinalização do Cálcio , Divisão Celular , Proteínas de Ligação a DNA/deficiência , Ativação Linfocitária , Linfopoese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Transporte Proteico , Transdução de Sinais , Organismos Livres de Patógenos Específicos , Recombinação V(D)J
19.
PLoS Biol ; 17(3): e2006716, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30856173

RESUMO

The interdependence of selective cues during development of regulatory T cells (Treg cells) in the thymus and their suppressive function remains incompletely understood. Here, we analyzed this interdependence by taking advantage of highly dynamic changes in expression of microRNA 181 family members miR-181a-1 and miR-181b-1 (miR-181a/b-1) during late T-cell development with very high levels of expression during thymocyte selection, followed by massive down-regulation in the periphery. Loss of miR-181a/b-1 resulted in inefficient de novo generation of Treg cells in the thymus but simultaneously permitted homeostatic expansion in the periphery in the absence of competition. Modulation of T-cell receptor (TCR) signal strength in vivo indicated that miR-181a/b-1 controlled Treg-cell formation via establishing adequate signaling thresholds. Unexpectedly, miR-181a/b-1-deficient Treg cells displayed elevated suppressive capacity in vivo, in line with elevated levels of cytotoxic T-lymphocyte-associated 4 (CTLA-4) protein, but not mRNA, in thymic and peripheral Treg cells. Therefore, we propose that intrathymic miR-181a/b-1 controls development of Treg cells and imposes a developmental legacy on their peripheral function.


Assuntos
MicroRNAs/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Citometria de Fluxo , Camundongos , Camundongos Knockout , MicroRNAs/genética , Microscopia Confocal , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Timócitos/metabolismo
20.
Eur J Immunol ; 49(1): 121-132, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30281154

RESUMO

The interdependence of posttranscriptional gene regulation via miRNA and transcriptional regulatory networks in lymphocyte development is poorly understood. Here, we identified miR-191 as direct upstream modulator of a transcriptional module comprising the transcription factors Foxp1, E2A, and Egr1. Deletion as well as ectopic expression of miR-191 resulted in developmental arrest in B lineage cells, indicating that fine tuning of the combined expression levels of Foxp1, E2A, and Egr1, which in turn control somatic recombination and cytokine-driven expansion, constitutes a prerequisite for efficient B-cell development. In conclusion, we propose that miR-191 acts as a rheostat in B-cell development by fine tuning a key transcriptional program.


Assuntos
Linfócitos B/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Fatores de Transcrição Forkhead/metabolismo , MicroRNAs/genética , Proteínas Repressoras/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Células Cultivadas , Proteína 1 de Resposta de Crescimento Precoce/genética , Fatores de Transcrição Forkhead/genética , Redes Reguladoras de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , Recombinação Genética , Proteínas Repressoras/genética , Transcrição Gênica , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...