Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pestic Biochem Physiol ; 187: 105173, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127039

RESUMO

Declines of the monarch butterfly population have prompted large-scale plantings of milkweed to restore the population. In North America, there are >73 species of milkweed to choose from for these nationwide plantings. However, it is unclear how different milkweed species affect monarch caterpillar physiology, particularly detoxification enzyme activity and gene expression, given the highly variable cardenolide composition across milkweed species. Here, we investigate the effects of a high cardenolide, tropical milkweed species and a low cardenolide, swamp milkweed species on pyrethroid sensitivity as well as detoxification enzyme activity and expression in monarch caterpillars. Caterpillars fed on each species through the fifth-instar stage and were topically treated with bifenthrin after reaching this final-instar stage. Esterase, glutathione S-transferase, and cytochrome P450 monooxygenase activities were quantified as well as the expression of selected esterase, glutathione S-transferase, ABC transporter, and cytochrome P450 monooxygenase transcripts. There were no significant differences in survival 24 h after treatment with bifenthrin. However, bifenthrin significantly increased glutathione S-transferase activity in caterpillars feeding on tropical milkweed and significantly decreased esterase activity in caterpillars feeding on tropical and swamp milkweed. Significant differential expression of ABC transporter, glutathione S-transferase, and esterase genes was observed for caterpillars feeding on tropical and swamp milkweed and not receiving bifenthrin treatment. Furthermore, significant differential expression of glutathione S-transferase and esterase genes was observed for bifenthrin-treated and -untreated caterpillars feeding on tropical milkweed relative to swamp milkweed. These results suggest that feeding on different milkweed species can affect detoxification and development mechanisms with which monarch caterpillars rely on to cope with their environment.


Assuntos
Asclepias , Borboletas , Inseticidas , Piretrinas , Transportadores de Cassetes de Ligação de ATP , Animais , Asclepias/metabolismo , Borboletas/genética , Cardenolídeos/metabolismo , Esterases/genética , Esterases/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Inseticidas/metabolismo , Inseticidas/toxicidade , Oxigenases de Função Mista/metabolismo , Piretrinas/metabolismo , Piretrinas/toxicidade
2.
J Econ Entomol ; 114(6): 2370-2380, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34532742

RESUMO

The monarch butterfly, Danaus plexippus L., has evolved to be insensitive to milkweed cardenolides via genetic modifications of Na+/K+-ATPase. There is concern for insecticide exposures near agriculture, with little information on monarch caterpillar toxicology. It is unclear how cardenolide insensitivity may affect the sensitivity of monarch caterpillars to pyrethroid insecticides. Additionally, potassium fertilizers may affect monarch caterpillar physiology and cardenolide sequestration. Here, we investigated the growth, survival, and development of caterpillars exposed to the cardenolide ouabain, bifenthrin, and potassium chloride (KCl) alone and in combination. Caterpillars were either exposed to 1) ouabain from third- to fifth-instar stage, 2) KCl at fifth-instar stage, 3) KCl and bifenthrin at fifth-instar stage, or 4) combinations of ouabain at third-instar stage + KCl + bifenthrin at fifth-instar stage. Caterpillar weight, diet consumption, frass, and survival were recorded for the duration of the experiments. It was observed that 1-3 mg ouabain/g diet increased body weight and diet consumption, whereas 50 mg KCl/g diet decreased body weight and diet consumption. Caterpillars feeding on KCl and treated with 0.2 µg/µl bifenthrin consumed significantly less diet compared to individuals provided untreated diet. However, there was no effect on survival or body weight. Combinations of KCl + ouabain did not significantly affect caterpillar survival or body weight following treatment with 0.1 µg/µl bifenthrin. At the concentrations tested, there were no effects observed for bifenthrin sensitivity with increasing cardenolide or KCl concentrations. Further studies are warranted to understand how milkweed-specific cardenolides, at increasing concentrations, and agrochemical inputs can affect monarch caterpillar physiology near agricultural landscapes.


Assuntos
Borboletas , Inseticidas , Piretrinas , Animais , Cardenolídeos , Larva , Potássio
3.
Environ Entomol ; 50(5): 1105-1117, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34279555

RESUMO

Risk assessment for chemicals in the United States relies upon the honey bee (Apis meliffera L. [Hymenoptera: Apidae]) as a surrogate for other bee species. There is uncertainty in extrapolating honey bee toxicity data to bumble bees due to differences in life history strategies, food consumption, and nest structure. Here we evaluated the design of a queenless bumble bee microcolony test that could be considered for generating larval toxicity data. Three microcolony studies were conducted with Bombus impatiens to evaluate the effects of exposure to 1) diflubenzuron in pollen, 2) dimethoate in pollen, and 3) dimethoate in sucrose. Immature drone bee emergence, worker survival, pollen, and sucrose utilization were measured throughout the study duration. For dimethoate, a 10-d chronic adult bumble bee study was also conducted to compare microcolony endpoints to toxicity endpoints on individual adults. Microcolonies exposed to 10 mg diflubenzuron/kg pollen produced fewer adult drones despite no effects on worker survival. Microcolonies treated with dimethoate at ≥3 mg a.i./kg pollen and ≥0.1 mg a.i./kg sucrose solution produced fewer drones. Exposure to dimethoate in the 10-d chronic adult study resulted in direct mortality to the adult workers at ≥0.1 mg a.i./kg diet. Results from the 10-d study suggest direct effects of dimethoate on workers in the microcolony will alter provisioning of diet to the brood, resulting in lower drone production in the microcolony. Our data suggest that the microcolony study is only appropriate to assess brood effects to bumble bees for substances with low toxicity to adults, as demonstrated with diflubenzuron.


Assuntos
Himenópteros , Praguicidas , Animais , Abelhas , Dieta , Larva , Pólen
4.
J Insect Sci ; 21(2)2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33686432

RESUMO

Insecticide exposure has been identified as a contributing stressor to the decline in the North American monarch butterfly Danaus plexippus L. (Lepidoptera: Nymphalidae) population. Monarch toxicity data are currently limited and available data focuses on lethal endpoints. This study examined the 72-h toxicity of two pyrethroid insecticides, bifenthrin and ß-cyfluthrin, and their effects on growth and diet consumption. The toxicity of bifenthrin to caterpillars was lower than ß-cyfluthrin after 72 h. Survival was the most sensitive endpoint for bifenthrin, but diet consumption and caterpillar growth were significantly reduced at sublethal levels of ß-cyfluthrin. Using AgDRIFT spray drift assessment, the aerial application of bifenthrin or ß-cyfluthrin is predicted to pose the greatest risk to fifth-instar caterpillars, with lethal insecticide deposition up to 28 m for bifenthrin and up to 23 m for ß-cyfluthrin from treated edges of fields. Low boom ground applications are predicted to reduce distances of lethal insecticide exposure to 2 m from the treated field edge for bifenthrin and ß-cyfluthrin. Growth and survival of fifth-instar monarch caterpillars developing within the margins of a treated field may be significantly impacted following foliar applications of bifenthrin or ß-cyfluthrin. These findings provide evidence that pyrethroid insecticides commonly used for soybean pest control are a potential risk to monarch caterpillars in agricultural landscapes.


Assuntos
Borboletas/efeitos dos fármacos , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Nitrilas/toxicidade , Piretrinas/toxicidade , Animais , Borboletas/crescimento & desenvolvimento , Proteção de Cultivos , Comportamento Alimentar/efeitos dos fármacos , Inseticidas/administração & dosagem , Larva/crescimento & desenvolvimento , Nitrilas/administração & dosagem , Piretrinas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...