Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
2.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38526744

RESUMO

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Assuntos
Proteínas Ativadoras de GTPase , Heterozigoto , Microcefalia , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento , Humanos , Microcefalia/genética , Feminino , Masculino , Pré-Escolar , Proteínas Ativadoras de GTPase/genética , Criança , Transtornos do Neurodesenvolvimento/genética , Mutação com Perda de Função , Animais , Deficiências do Desenvolvimento/genética , Camundongos , Lactente , Fenótipo , Adolescente
3.
Eur J Hum Genet ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38355961

RESUMO

Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.

4.
Neurology ; 102(2): e208050, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38165345

RESUMO

Pediatric movement disorders (PMD) neurologists care for infants, children, and adolescents with conditions that disrupt typical movement; serving as important subspecialist child neurologists in both academic and private practice settings. In contrast to adult movement disorders neurologists whose "bread and butter" is hypokinetic Parkinson disease, PMD subspecialty practice is often dominated by hyperkinetic movement disorders including tics, dystonia, chorea, tremor, and myoclonus. PMD neurology practice intersects with a variety of subspecialties, including neonatology, developmental pediatrics, rehabilitation medicine, epilepsy, child & adolescent psychiatry, psychology, orthopedics, genetics & metabolism, and neurosurgery. Over the past several decades, significant advancements in the PMD field have included operationalizing definitions for distinct movement disorders, recognizing the spectrum of clinical phenotypes, expanding research on genetic and neuroimmunologic causes of movement disorders, and advancing available treatments. Subspecialty training in PMD provides trainees with advanced clinical, diagnostic, procedural, and management skills that reflect the complexities of contemporary practice. The child neurologist who is fascinated by the intricacies of child motor development, appreciates the power of observation skills coupled with a thoughtful physical examination, and is excited by the challenge of the unknown may be well-suited to a career as a PMD specialist.


Assuntos
Coreia , Neurologia , Doença de Parkinson , Adolescente , Adulto , Criança , Lactente , Humanos , Tremor , Neurologistas
5.
medRxiv ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37745357

RESUMO

Background and objectives: Single gene mutations are increasingly recognized as causes of cerebral palsy (CP) phenotypes, yet there is currently no standardized framework for measuring their clinical impact. We evaluated Pathogenic/Likely Pathogenic (P/LP) variants identified in individuals with CP to determine how frequently genetic testing results would prompt changes in care. Methods: We analyzed published P/LP variants in OMIM genes identified in clinical (n = 1,345 individuals) or research (n = 496) cohorts using exome sequencing of CP patients. We established a working group of clinical and research geneticists, developmental pediatricians, genetic counselors, and neurologists and performed a systematic review of existing literature for evidence of clinical management approaches linked to genetic disorders. Scoring rubrics were adapted, and a modified Delphi approach was used to build consensus and establish the anticipated impact on patient care. Overall clinical utility was calculated from metrics assessing outcome severity if left untreated, safety/practicality of the intervention, and anticipated intervention efficacy . Results: We found 140/1,841 (8%) of individuals in published CP cohorts had a genetic diagnosis classified as actionable , defined as prompting a change in clinical management based on knowledge related to the genetic etiology. 58/243 genes with P/LP variants were classified as actionable; 16 had treatment options targeting the primary disease mechanism , 16 had specific prevention strategies , and 26 had specific symptom management recommendations. The level of evidence was also graded according to ClinGen criteria; 44.6% of interventions had evidence class "D" or below. The potential interventions have clinical utility with 97% of outcomes being moderate-high severity if left untreated and 62% of interventions predicted to be of moderate-high efficacy . Most interventions (71%) were considered moderate-high safety/practicality . Discussion: Our findings indicate that actionable genetic findings occur in 8% of individuals referred for genetic testing with CP. Evaluation of potential efficacy , outcome severity , and intervention safety / practicality indicates moderate-high clinical utility of these genetic findings. Thus, genetic sequencing to identify these individuals for precision medicine interventions could improve outcomes and provide clinical benefit to individuals with CP. The relatively limited evidence base for most interventions underscores the need for additional research.

6.
Neurogenetics ; 24(4): 311-316, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37668766

RESUMO

Intellectual disability (ID), occurring in syndromic or non-syndromic forms, is the most common neurodevelopmental disorder. Although many cases are caused by single gene defects, ID is highly genetically heterogeneous. Biallelic variants in the transmembrane protein TMEM147 have recently been linked to intellectual disability with dysmorphic facial features. TMEM147 is believed to localize to the endoplasmic reticulum membrane and nuclear envelope and also involved in biogenesis of multi-pass membrane proteins. Here, we report two patients born to a consanguineous family with a novel loss-of-function variant; (NM_001242597.2:c.193-197del) in TMEM147 causing intellectual disability and spasticity. Whole exome sequencing and validating Sanger sequencing were utilized to confirm the identified causal variant. Our findings were in line with the previously described patients with TMEM147 variants manifesting intellectual disability as a major clinical sign but also featured spasticity as a phenotypic expansion. This study provides additional evidence for the pathogenicity of TMEM147 mutations in intellectual disability and expands the phenotypic and variant spectrum linked to this gene.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Linhagem , Transtornos do Neurodesenvolvimento/genética , Mutação , Proteínas de Membrana/genética
7.
Orphanet J Rare Dis ; 18(1): 225, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537625

RESUMO

BACKGROUND: Mutations in the NMDA receptor are known to disrupt glutamatergic signaling crucial for early neurodevelopment, often leading to severe global developmental delay/intellectual disability, epileptic encephalopathy, and cerebral palsy phenotypes. Both seizures and movement disorders can be highly treatment-refractory. RESULTS: We describe a targeted ABA n-of-1 treatment trial with intrathecal MgSO4, rationally designed based on the electrophysiologic properties of this gain of function mutation in the GRIN1 NMDA subunit. CONCLUSION: Although the invasive nature of the trial necessitated a short-term, non-randomized, unblinded intervention, quantitative longitudinal neurophysiologic monitoring indicated benefit, providing class II evidence in support of intrathecal MgSO4 for select forms of GRIN disorders.


Assuntos
Deficiência Intelectual , Magnésio , Humanos , Deficiência Intelectual/genética , Magnésio/metabolismo , Mutação/genética , Proteínas do Tecido Nervoso/genética , Receptores de N-Metil-D-Aspartato/genética , Convulsões/genética , Estudos de Caso Único como Assunto
8.
bioRxiv ; 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37503287

RESUMO

Dystonia is common, debilitating, often medically refractory, and difficult to diagnose. The gold standard for both clinical and mouse model dystonia evaluation is subjective assessment, ideally by expert consensus. However, this subjectivity makes translational quantification of clinically-relevant dystonia metrics across species nearly impossible. Many mouse models of genetic dystonias display abnormal striatal cholinergic interneuron excitation, but few display subjectively dystonic features. Therefore, whether striatal cholinergic interneuron pathology causes dystonia remains unknown. To address these critical limitations, we first demonstrate that objectively quantifiable leg adduction variability correlates with leg dystonia severity in people. We then show that chemogenetic excitation of striatal cholinergic interneurons in mice causes comparable leg adduction variability in mice. This clinically-relevant dystonic behavior in mice does not occur with acute excitation, but rather develops after 14 days of ongoing striatal cholinergic interneuron excitation. This requirement for prolonged excitation recapitulates the clinically observed phenomena of a delay between an inciting brain injury and subsequent dystonia manifestation and demonstrates a causative link between chronic striatal cholinergic interneuron excitation and clinically-relevant dystonic behavior in mice. Therefore, these results support targeting striatal ChIs for dystonia drug development and suggests early treatment in the window following injury but prior to dystonia onset. One Sentence Summary: Chronic excitation of dorsal striatal cholinergic interneuron causes clinically-relevant dystonic phenotypes in mice.

9.
Dis Model Mech ; 16(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37470098

RESUMO

AGAP1 is an Arf1 GTPase-activating protein that regulates endolysosomal trafficking. Damaging variants have been linked to cerebral palsy and autism. We report three new cases in which individuals had microdeletion variants in AGAP1. The affected individuals had intellectual disability (3/3), autism (3/3), dystonia with axial hypotonia (1/3), abnormalities of brain maturation (1/3), growth impairment (2/3) and facial dysmorphism (2/3). We investigated mechanisms potentially underlying AGAP1 variant-mediated neurodevelopmental impairments using the Drosophila ortholog CenG1a. We discovered reduced axon terminal size, increased neuronal endosome abundance and elevated autophagy compared to those in controls. Given potential incomplete penetrance, we assessed gene-environment interactions. We found basal elevation in the phosphorylation of the integrated stress-response protein eIF2α (or eIF2A) and inability to further increase eIF2α phosphorylation with subsequent cytotoxic stressors. CenG1a-mutant flies had increased lethality from exposure to environmental insults. We propose a model wherein disruption of AGAP1 function impairs endolysosomal trafficking, chronically activating the integrated stress response and leaving AGAP1-deficient cells susceptible to a variety of second-hit cytotoxic stressors. This model may have broader applicability beyond AGAP1 in instances where both genetic and environmental insults co-occur in individuals with neurodevelopmental disorders.


Assuntos
Interação Gene-Ambiente , Deficiência Intelectual , Humanos , Endossomos , Deficiência Intelectual/genética , Proteínas Ativadoras de GTPase
10.
Genet Med ; 25(8): 100885, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37165955

RESUMO

PURPOSE: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability. METHODS: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro. RESULTS: In accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well. CONCLUSION: By identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.


Assuntos
Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Epilepsia/genética , Epilepsia/patologia , Estudos de Associação Genética , Deficiência Intelectual/genética , Fenótipo , GTP Fosfo-Hidrolases/genética , Proteínas de Ligação ao GTP/genética , Proteínas Supressoras de Tumor/genética
11.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37163102

RESUMO

DNA transposable elements and transposase-derived genes are present in most living organisms, including vertebrates, but their function is largely unknown. PiggyBac Transposable Element Derived 5 (PGBD5) is an evolutionarily conserved vertebrate DNA transposase-derived gene with retained nuclease activity in cells. Vertebrate brain development is known to be associated with prominent neuronal cell death and DNA breaks, but their causes and functions are not well understood. Here, we show that PGBD5 contributes to normal brain development in mice and humans, where its deficiency causes disorder of intellectual disability, movement and seizures. In mice, Pgbd5 is required for the developmental induction of post-mitotic DNA breaks and recurrent somatic genome rearrangements in neurons. Together, these studies nominate PGBD5 as the long-hypothesized neuronal DNA nuclease required for brain function in mammals.

12.
J Med Genet ; 60(10): 1026-1034, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37197783

RESUMO

BACKGROUND: RNA polymerase III-related or 4H leukodystrophy (POLR3-HLD) is an autosomal recessive hypomyelinating leukodystrophy characterized by neurological dysfunction, hypodontia and hypogonadotropic hypogonadism. The disease is caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C or POLR3K. Craniofacial abnormalities reminiscent of Treacher Collins syndrome have been originally described in patients with POLR3-HLD caused by biallelic pathogenic variants in POLR1C. To date, no published studies have appraised in detail the craniofacial features of patients with POLR3-HLD. In this work, the specific craniofacial characteristics of patients with POLR3-HLD associated with biallelic pathogenic variants in POLR3A, POLR3B and POLR1C are described. METHODS: The craniofacial features of 31 patients with POLR3-HLD were evaluated, and potential genotype-phenotype associations were evaluated. RESULTS: Various craniofacial abnormalities were recognized in this patient cohort, with each individual presenting at least one craniofacial abnormality. The most frequently identified features included a flat midface (61.3%), a smooth philtrum (58.0%) and a pointed chin (51.6%). In patients with POLR3B biallelic variants, a thin upper lip was frequent. Craniofacial anomalies involving the forehead were most commonly associated with biallelic variants in POLR3A and POLR3B while a higher proportion of patients with POLR1C biallelic variants demonstrated bitemporal narrowing. CONCLUSION: Through this study, we demonstrated that craniofacial abnormalities are common in patients with POLR3-HLD. This report describes in detail the dysmorphic features of POLR3-HLD associated with biallelic variants in POLR3A, POLR3B and POLR1C.


Assuntos
Doenças Desmielinizantes , Doenças Neurodegenerativas , Humanos , RNA Polimerase III/genética , Padrões de Herança , RNA Polimerases Dirigidas por DNA/genética
13.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778426

RESUMO

AGAP1 is an Arf1 GAP that regulates endolysosomal trafficking. Damaging variants have been linked to cerebral palsy and autism. We report 3 new individuals with microdeletion variants in AGAP1 . Affected individuals have intellectual disability (3/3), autism (3/3), dystonia with axial hypotonia (1/3), abnormalities of brain maturation (1/3), growth impairment (2/3) and facial dysmorphism (2/3). We investigated mechanisms potentially underlying AGAP1 neurodevelopmental impairments using the Drosophila ortholog, CenG1a . We discovered reduced axon terminal size, increased neuronal endosome abundance, and elevated autophagy at baseline. Given potential incomplete penetrance, we assessed gene-environment interactions. We found basal elevation in phosphorylation of the integrated stress-response protein eIF2α and inability to further increase eIF2α-P with subsequent cytotoxic stressors. CenG1a -mutant flies have increased lethality from exposure to environmental insults. We propose a model wherein disruption of AGAP1 function impairs endolysosomal trafficking, chronically activating the integrated stress response, and leaving AGAP1-deficient cells susceptible to a variety of second hit cytotoxic stressors. This model may have broader applicability beyond AGAP1 in instances where both genetic and environmental insults co-occur in individuals with neurodevelopmental disorders. Summary statement: We describe 3 additional patients with heterozygous AGAP1 deletion variants and use a loss of function Drosophila model to identify defects in synaptic morphology with increased endosomal sequestration, chronic autophagy induction, basal activation of eIF2α-P, and sensitivity to environmental stressors.

14.
Clin Genet ; 103(2): 156-166, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36224108

RESUMO

CNOT2 haploinsufficiency underlies a rare neurodevelopmental disorder named Intellectual Developmental disorder with NAsal speech, Dysmorphic Facies, and variable Skeletal anomalies (IDNADFS, OMIM 618608). The condition clinically overlaps with chromosome 12q15 deletion syndrome, suggesting a major contribution of CNOT2 haploinsufficiency to the latter. CNOT2 is a member of the CCR4-NOT complex, which is a master regulator of multiple cellular processes, including gene expression, RNA deadenylation, and protein ubiquitination. To date, less than 20 pathogenic 12q15 microdeletions encompassing CNOT2, together with a single truncating variant of the gene, and two large intragenic deletions have been reported. Due to the small number of affected subjects described so far, the clinical profile of IDNADFS has not been fully delineated. Here we report five unrelated individuals, three of which carrying de novo intragenic CNOT2 variants, one presenting with a multiexon intragenic deletion, and an additional case of 12q15 microdeletion syndrome. Finally, we assess the features of IDNADFS by reviewing published and present affected individuals and reevaluate the clinical phenotype of this neurodevelopmental disorder.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Deleção Cromossômica , Haploinsuficiência/genética , Transtornos do Neurodesenvolvimento/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Fenótipo , Proteínas Repressoras/genética
15.
JAMA Neurol ; 79(12): 1287-1295, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36279113

RESUMO

Importance: There are many known acquired risk factors for cerebral palsy (CP), but in some cases, CP is evident without risk factors (cryptogenic CP). Early CP cohort studies report a wide range of diagnostic yields for sequence variants assessed by exome sequencing (ES) and copy number variants (CNVs) assessed by chromosomal microarray (CMA). Objective: To synthesize the emerging CP genetics literature and address the question of what percentage of individuals with CP have a genetic disorder via ES and CMA. Data Sources: Searched articles were indexed by PubMed with relevant queries pertaining to CP and ES/CMA (query date, March 15, 2022). Study Selection: Inclusion criteria were as follows: primary research study, case series with 10 or more nonrelated individuals, CP diagnosis, and ES and/or CMA data used for genetic evaluation. Nonblinded review was performed. Data Extraction and Synthesis: Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines were used for assessing data quality and validity. Data were extracted by a single observer. Main Outcomes and Measures: A separate meta-analysis was performed for each modality (ES, CMA). The primary outcome was proportion/molecular diagnostic yield (number of patients with a discovered genetic disorder divided by the total number of patients in the cohort), evaluated via meta-analysis of single proportions using random-effects logistic regression. A subgroup meta-analysis was conducted, using risk factor classification as a subgroup. A forest plot was used to display diagnostic yields of individual studies. Results: In the meta-analysis of ES yield in CP, the overall diagnostic yield of ES among the cohorts (15 study cohorts comprising 2419 individuals from 11 articles) was 23% (95% CI, 15%-34%). The diagnostic yield across cryptogenic CP cohorts was 35% (95% CI, 27%-45%), compared with 7% (95% CI, 4%-12%) across cohorts with known risk factors (noncryptogenic CP). In the meta-analysis of CMA yield in CP, the diagnostic yield of CMA among the cohorts (5 study cohorts comprising 294 individuals from 5 articles) was 5% (95% CI, 2%-12%). Conclusions and Relevance: Results of this systematic review and meta-analysis suggest that for individuals with cryptogenic CP, ES followed by CMA to identify molecular disorders may be warranted.


Assuntos
Paralisia Cerebral , Patologia Molecular , Humanos , Paralisia Cerebral/diagnóstico , Paralisia Cerebral/genética , Análise em Microsséries/métodos , Sequenciamento do Exoma , Variações do Número de Cópias de DNA/genética
16.
Genet Med ; 24(11): 2351-2366, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36083290

RESUMO

PURPOSE: Germline loss-of-function variants in CTNNB1 cause neurodevelopmental disorder with spastic diplegia and visual defects (NEDSDV; OMIM 615075) and are the most frequent, recurrent monogenic cause of cerebral palsy (CP). We investigated the range of clinical phenotypes owing to disruptions of CTNNB1 to determine the association between NEDSDV and CP. METHODS: Genetic information from 404 individuals with collectively 392 pathogenic CTNNB1 variants were ascertained for the study. From these, detailed phenotypes for 52 previously unpublished individuals were collected and combined with 68 previously published individuals with comparable clinical information. The functional effects of selected CTNNB1 missense variants were assessed using TOPFlash assay. RESULTS: The phenotypes associated with pathogenic CTNNB1 variants were similar. A diagnosis of CP was not significantly associated with any set of traits that defined a specific phenotypic subgroup, indicating that CP is not additional to NEDSDV. Two CTNNB1 missense variants were dominant negative regulators of WNT signaling, highlighting the utility of the TOPFlash assay to functionally assess variants. CONCLUSION: NEDSDV is a clinically homogeneous disorder irrespective of initial clinical diagnoses, including CP, or entry points for genetic testing.


Assuntos
Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Humanos , Fenótipo , Transtornos do Neurodesenvolvimento/genética , Via de Sinalização Wnt/genética , Deficiência Intelectual/genética , Genômica , beta Catenina/genética
17.
J Child Neurol ; 37(10-11): 813-824, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36053123

RESUMO

Deep brain stimulation (DBS) is an established intervention for use in pediatric movement disorders, especially dystonia. Although multiple publications have provided guidelines for deep brain stimulation patient selection and programming in adults, there are no evidence-based or consensus statements published for pediatrics. The result is lack of standardized care and underutilization of this effective treatment. To this end, we assembled a focus group of 13 pediatric movement disorder specialists and 1 neurosurgeon experienced in pediatric deep brain stimulation to review recent literature and current practices and propose a standardized approach to candidate selection, implantation target site selection, and programming algorithms. For pediatric dystonia, we provide algorithms for (1) programming for initial session and follow-up sessions, and (2) troubleshooting side effects encountered during programming. We discuss common side effects, how they present, and recommendations for management. This topical review serves as a resource for movement disorders specialists interested in using deep brain stimulation for pediatric dystonia.


Assuntos
Estimulação Encefálica Profunda , Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Adulto , Algoritmos , Criança , Distonia/etiologia , Distonia/terapia , Distúrbios Distônicos/terapia , Humanos , Transtornos dos Movimentos/etiologia , Resultado do Tratamento
19.
Nat Commun ; 13(1): 4112, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35840571

RESUMO

SLITRK2 is a single-pass transmembrane protein expressed at postsynaptic neurons that regulates neurite outgrowth and excitatory synapse maintenance. In the present study, we report on rare variants (one nonsense and six missense variants) in SLITRK2 on the X chromosome identified by exome sequencing in individuals with neurodevelopmental disorders. Functional studies showed that some variants displayed impaired membrane transport and impaired excitatory synapse-promoting effects. Strikingly, these variations abolished the ability of SLITRK2 wild-type to reduce the levels of the receptor tyrosine kinase TrkB in neurons. Moreover, Slitrk2 conditional knockout mice exhibited impaired long-term memory and abnormal gait, recapitulating a subset of clinical features of patients with SLITRK2 variants. Furthermore, impaired excitatory synapse maintenance induced by hippocampal CA1-specific cKO of Slitrk2 caused abnormalities in spatial reference memory. Collectively, these data suggest that SLITRK2 is involved in X-linked neurodevelopmental disorders that are caused by perturbation of diverse facets of SLITRK2 function.


Assuntos
Transtornos do Neurodesenvolvimento , Sinapses , Animais , Cognição , Hipocampo/fisiologia , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Sinapses/metabolismo
20.
Neurology ; 99(6): 237-245, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35715199

RESUMO

Dystonia in cerebral palsy (DCP) is a common, debilitating, but understudied condition. The CP community (people with CP and caregivers) is uniquely equipped to help determine the research questions that best address their needs. We developed a community-driven DCP research agenda using the well-established James Lind Alliance methodology. CP community members, researchers, and clinicians were recruited through multiple advocacy, research, and professional organizations. To ensure shared baseline knowledge, participants watched webinars outlining our current knowledge on DCP prepared by a Steering Group of field experts (cprn.org/research-cp-dystonia-edition). Participants next submitted their remaining uncertainties about DCP. These were vetted by the Steering Group and consolidated to eliminate redundancy to generate a list of unique uncertainties, which were then prioritized by the participants. The top-prioritized uncertainties were aggregated into themes through iterative consensus-building discussions within the Steering Group. 166 webinar viewers generated 67 unique uncertainties. 29 uncertainties (17 generated by community members) were prioritized higher than their randomly matched pairs. These were coalesced into the following top 10 DCP research themes: (1) develop new treatments; (2) assess rehabilitation, psychological, and environmental management approaches; (3) compare effectiveness of current treatments; (4) improve diagnosis and severity assessments; (5) assess the effect of mixed tone (spasticity and dystonia) in outcomes and approaches; (6) assess predictors of treatment responsiveness; (7) identify pathophysiologic mechanisms; (8) characterize the natural history; (9) determine the best treatments for pain; and (10) increase family awareness. This community-driven research agenda reflects the concerns most important to the community, both in perception and in practice. We therefore encourage future DCP research to center around these themes. Furthermore, noting that community members (not clinicians or researchers) generated the majority of top-prioritized uncertainties, our results highlight the important contributions community members can make to research agendas, even beyond DCP.


Assuntos
Pesquisa Biomédica , Paralisia Cerebral , Distonia , Distúrbios Distônicos , Cuidadores , Paralisia Cerebral/complicações , Paralisia Cerebral/terapia , Distúrbios Distônicos/terapia , Humanos , Pesquisadores , Incerteza
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...