Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecol Lett ; 26(6): 883-895, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37059694

RESUMO

Biodiversity may increase ecosystem resilience. However, we have limited understanding if this holds true for ecosystems that respond to gradual environmental change with abrupt shifts to an alternative state. We used a mathematical model of anoxic-oxic regime shifts and explored how trait diversity in three groups of bacteria influences resilience. We found that trait diversity did not always increase resilience: greater diversity in two of the groups increased but in one group decreased resilience of their preferred ecosystem state. We also found that simultaneous trait diversity in multiple groups often led to reduced or erased diversity effects. Overall, our results suggest that higher diversity can increase resilience but can also promote collapse when diversity occurs in a functional group that negatively influences the state it occurs in. We propose this mechanism as a potential management approach to facilitate the recovery of a desired ecosystem state.


Assuntos
Biodiversidade , Ecossistema , Modelos Teóricos , Bactérias , Fenótipo
2.
Ecol Evol ; 11(14): 9174-9181, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34306613

RESUMO

Metadata plays an essential role in the long-term preservation, reuse, and interoperability of data. Nevertheless, creating useful metadata can be sufficiently difficult and weakly enough incentivized that many datasets may be accompanied by little or no metadata. One key challenge is, therefore, how to make metadata creation easier and more valuable. We present a solution that involves creating domain-specific metadata schemes that are as complex as necessary and as simple as possible. These goals are achieved by co-development between a metadata expert and the researchers (i.e., the data creators). The final product is a bespoke metadata scheme into which researchers can enter information (and validate it) via the simplest of interfaces: a web browser application and a spreadsheet.We provide the R package dmdScheme (dmdScheme: An R package for working with domain specific MetaData schemes (Version v0.9.22), 2019) for creating a template domain-specific scheme. We describe how to create a domain-specific scheme from this template, including the iterative co-development process, and the simple methods for using the scheme, and simple methods for quality assessment, improvement, and validation.The process of developing a metadata scheme following the outlined approach was successful, resulting in a metadata scheme which is used for the data generated in our research group. The validation quickly identifies forgotten metadata, as well as inconsistent metadata, therefore improving the quality of the metadata. Multiple output formats are available, including XML.Making the provision of metadata easier while also ensuring high quality must be a priority for data curation initiatives. We show how both objectives are achieved by close collaboration between metadata experts and researchers to create domain-specific schemes. A near-future priority is to provide methods to interface domain-specific schemes with general metadata schemes, such as the Ecological Metadata Language, to increase interoperability.

3.
Sustain Sci ; 13(6): 1519-1531, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30546485

RESUMO

Sustainability is a key challenge for humanity in the context of complex and unprecedented global changes. Future Earth, an international research initiative aiming to advance global sustainability science, has recently launched knowledge-action networks (KANs) as mechanisms for delivering its research strategy. The research initiative is currently developing a KAN on "natural assets" to facilitate and enable action-oriented research and synthesis towards natural assets sustainability. 'Natural assets' has been adopted by Future Earth as an umbrella term aiming to translate and bridge across different knowledge systems and different perspectives on peoples' relationships with nature. In this paper, we clarify the framing of Future Earth around natural assets emphasizing the recognition on pluralism and identifying the challenges of translating different visions about the role of natural assets, including via policy formulation, for local to global sustainability challenges. This understanding will be useful to develop inter-and transdisciplinary solutions for human-environmental problems by (i) embracing richer collaborative decision processes and building bridges across different perspectives; (ii) giving emphasis on the interactions between biophysical and socioeconomic drivers affecting the future trends of investments and disinvestments in natural assets; and (iii) focusing on social equity, power relationships for effective application of the natural assets approach. This understanding also intends to inform the scope of the natural asset KAN's research agenda to mobilize the translation of research into co-designed action for sustainability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA