Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 78(7): 3205-3218, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33449147

RESUMO

Meiotic drive, the non-Mendelian transmission of chromosomes to the next generation, functions in asymmetric or symmetric meiosis across unicellular and multicellular organisms. In asymmetric meiosis, meiotic drivers act to alter a chromosome's spatial position in a single egg. In symmetric meiosis, meiotic drivers cause phenotypic differences between gametes with and without the driver. Here we discuss existing models of meiotic drive, highlighting the underlying mechanisms and regulation governing systems for which the most is known. We focus on outstanding questions surrounding these examples and speculate on how new meiotic drive systems evolve and how to detect them.


Assuntos
Evolução Biológica , Segregação de Cromossomos , Meiose , Fuso Acromático/fisiologia , Animais , Humanos
2.
Curr Biol ; 29(21): 3699-3706.e5, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31630956

RESUMO

The mammalian sex chromosomes harbor an abundance of newly acquired ampliconic genes, although their functions require elucidation [1-9]. Here, we demonstrate that the X-linked Slx and Slxl1 ampliconic gene families represent mouse-specific neofunctionalized copies of a meiotic synaptonemal complex protein, Sycp3. In contrast to the meiotic role of Sycp3, CRISPR-loxP-mediated multi-megabase deletions of the Slx (5 Mb) and Slxl1 (2.3Mb) ampliconic regions result in post-meiotic defects, abnormal sperm, and male infertility. Males carrying Slxl1 deletions sire more male offspring, whereas males carrying Slx and Slxl1 duplications sire more female offspring, which directly correlates with Slxl1 gene dosage and gene expression levels. SLX and SLXL1 proteins interact with spindlin protein family members (SPIN1 and SSTY1/2) and males carrying Slxl1 deletions downregulate a sex chromatin modifier, Scml2, leading us to speculate that Slx and Slxl1 function in chromatin regulation. Our study demonstrates how newly acquired X-linked genes can rapidly evolve new and essential functions and how gene amplification can increase sex chromosome transmission.


Assuntos
Fertilidade/genética , Genes Ligados ao Cromossomo X/genética , Família Multigênica/genética , Cromossomos Sexuais/genética , Razão de Masculinidade , Animais , Feminino , Dosagem de Genes , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA
3.
Sci Rep ; 8(1): 8985, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895860

RESUMO

Large (>10 kb) palindromic sequences are enriched on mammalian sex chromosomes. In mice, these palindromes harbor gene families (≥2 gene copies) expressed exclusively in post-meiotic testicular germ cells, a time when most single-copy sex-linked genes are transcriptionally repressed. This observation led to the hypothesis that palindromic structures or having ≥2 gene copies enable post-meiotic gene expression. We tested these hypotheses by using CRISPR to precisely engineer large (10's of kb) inversions and deletions of X-chromosome palindrome arms for two regions that carry the mouse 4930567H17Rik and Mageb5 palindrome gene families. We found that 4930567H17Rik and Mageb5 gene expression is unaffected in mice carrying palindrome arm inversions and halved in mice carrying palindrome arm deletions. We assessed whether palindrome-associated genes were sensitive to reduced expression in mice carrying palindrome arm deletions. Male mice carrying palindrome arm deletions are fertile and show no defects in post-meiotic spermatogenesis. Together, these findings suggest palindromic structures on the sex chromosomes are not necessary for their associated genes to evade post-meiotic transcriptional repression and that these genes are not sensitive to reduced expression levels. Large sex chromosome palindromes may be important for other reasons, such as promoting gene conversion between palindrome arms.


Assuntos
Deleção Cromossômica , Inversão Cromossômica , Regulação da Expressão Gênica , Sequências Repetidas Invertidas , Meiose , Cromossomo X , Animais , Masculino , Camundongos , Cromossomo X/genética , Cromossomo X/metabolismo
4.
Protein Sci ; 24(9): 1495-507, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26130403

RESUMO

Cytochrome P450 enzymes are hemeproteins that catalyze the monooxygenation of a wide-range of structurally diverse substrates of endogenous and exogenous origin. These heme monooxygenases receive electrons from NADH/NADPH via electron transfer proteins. The cytochrome P450 enzymes, which constitute a diverse superfamily of more than 8,700 proteins, share a common tertiary fold but < 25% sequence identity. Based on their electron transfer protein partner, cytochrome P450 proteins are classified into six broad classes. Traditional methods of pro are based on the canonical paradigm that attributes proteins' function to their three-dimensional structure, which is determined by their primary structure that is the amino acid sequence. It is increasingly recognized that protein dynamics play an important role in molecular recognition and catalytic activity. As the mobility of a protein is an intrinsic property that is encrypted in its primary structure, we examined if different classes of cytochrome P450 enzymes display any unique patterns of intrinsic mobility. Normal mode analysis was performed to characterize the intrinsic dynamics of five classes of cytochrome P450 proteins. The present study revealed that cytochrome P450 enzymes share a strong dynamic similarity (root mean squared inner product > 55% and Bhattacharyya coefficient > 80%), despite the low sequence identity (< 25%) and sequence similarity (< 50%) across the cytochrome P450 superfamily. Noticeable differences in Cα atom fluctuations of structural elements responsible for substrate binding were noticed. These differences in residue fluctuations might be crucial for substrate selectivity in these enzymes.


Assuntos
Biologia Computacional/métodos , Sistema Enzimático do Citocromo P-450/química , Sistema Enzimático do Citocromo P-450/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Transporte de Elétrons , Heme/química , Heme/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...