Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(17)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39274827

RESUMO

1H spin-lattice relaxation experiments have been performed for gels based on fish collagen in order to analyze water dynamics. The covered frequency range ranges from 10 kHz to 10 MHz; in some cases, the temperature has varied as well. The relaxation data have been reproduced in terms of two models of water motion-a model including two relaxation contributions associated with the diffusion of water molecules on the macromolecular surfaces and a second model being just a phenomenological power law. The concept of surface diffusion has led to a very good agreement with the experimental data and a consistent set of parameters, with the diffusion coefficients being about five orders of magnitude slower compared to bulk water for one of the pools and considerably faster for the second one (smaller by factors between 2 and 20 compared to bulk water). In some cases, the attempt to reproduce the data in terms of a power law has led to a good agreement with the experimental data (the power law factor varying between 0.41 and 0.57); however, in other cases, the discrepancies are significant. This outcome favors the concept of surface diffusion.

2.
J Dairy Sci ; 107(10): 7691-7703, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38851570

RESUMO

The aim of the study was to enquire to which extend 1H spin-lattice nuclear magnetic resonance (NMR) relaxometry data collected over a broad range of resonance frequencies (from 10 kHz to 10 MHz) have the potential to be used for assessing quality and authenticity of different categories of cheese. The following cheeses were selected mozzarella, processed cheese, pizza cheese, pizza cheese with modified fat phase), low-fat cheese, and long ripened cheese. The cheeses from 3 different production plants and various cheese production batches were used in the study. The samples from each group were subjected to instrumental composition analysis (FoodScan analyzer type 78810, FOSS, Hillerod, Denmark), water activity assessment (Aqualab 4TEV analyzer, type S40001855) and nuclear magnetic resonance relaxation dispersion study (SMARtracer FFC relaxometer, Stelar S.r.l, Italy). The state and dynamics of water present in products as free and bound water largely determines the properties of food products, including cheeses. Nuclear magnetic resonance relaxometry studies of cheese enable to reveal relaxation features characteristic of specific categories of cheese. Consequently, the studies can be treated as a step toward exploiting NMR relaxometry for accessing quality and authenticity of cheese. It was shown that at low resonance frequencies, the lower the moisture, the larger the relaxation rate. The durability and quality of cheeses depend on the presence and condition of water, so it is necessary to find a relationship between the presence, condition and mobility of water in cheeses, to increase and improve the quality and extend the shelf life.


Assuntos
Queijo , Espectroscopia de Ressonância Magnética , Água , Queijo/análise , Animais
3.
Molecules ; 29(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38893297

RESUMO

1H fast field-cycling and time-domain nuclear magnetic resonance relaxometry studies have been performed for 15 samples of sugar of different kinds and origins (brown, white, cane, beet sugar). The extensive data set, including results for crystal sugar and sugar/water mixtures, has been thoroughly analyzed, with a focus on identifying relaxation contributions associated with the solid and liquid fractions of the systems and non-exponentiality of the relaxation processes. It has been observed that 1H spin-lattice relaxation rates for crystal sugar (solid) vary between 0.45 s-1 and 0.59 s-1, and the relaxation process shows only small deviations from exponentiality (a quantitative measure of the exponentiality has been provided). The 1H spin-lattice relaxation process for sugar/water mixtures has turned out to be bi-exponential, with the relaxation rates varying between about 13 s-1-17 s-1 (for the faster component) and about 2.1 s-1-3.5 s-1 (for the slower component), with the ratio between the amplitudes of the relaxation contributions ranging between 2.8 and 4.2. The narrow ranges in which the parameters vary make them a promising marker of the quality and authenticity of sugar.

4.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38656443

RESUMO

1H spin-lattice Nuclear Magnetic Resonance relaxometry experiments have been performed for collagen and collagen-based artificial tissues in the frequency range of 10 kHz-20 MHz. The studies were performed for non-hydrated and hydrated materials. The relaxation data have been interpreted as including relaxation contributions originating from 1H-1H and 1H-14N dipole-dipole interactions, the latter leading to Quadrupole Relaxation Enhancement effects. The 1H-1H relaxation contributions have been decomposed into terms associated with dynamical processes on different time scales. A comparison of the parameters for the non-hydrated and hydrated systems has shown that hydration leads to a decrease in the dipolar relaxation constants without significantly affecting the dynamical processes. In the next step, the relaxation data for the hydrated systems were interpreted in terms of a model assuming two-dimensional translational diffusion of water molecules in the vicinity of the macromolecular surfaces and a sub-diffusive motion leading to a power law of the frequency dependencies of the relaxation rates. It was found that the water diffusion process is slowed down by at least two orders of magnitude compared to bulk water diffusion. The frequency dependencies of the relaxation rates in hydrated tissues and hydrated collagen are characterized by different power laws (ωH-ß, where ωH denotes the 1H resonance frequency): the first of about 0.4 and the second close to unity.

5.
J Chem Phys ; 160(14)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38606737

RESUMO

1H spin-lattice relaxation studies have been performed for binary systems, including glycerol as the first component and alanine, glycine, and aspartic acid (with different levels of deuteration) as the second one. The relaxation studies have been performed in the frequency range from 10 kHz to 10 MHz vs temperature. A theoretical framework, including all relevant 1H-1H and 1H-2H relaxation pathways, has been formulated. The theory has been exploited for a thorough interpretation of a large set of the experimental data. The importance of the 1H-2H relaxation contributions has been discussed, and the possibility of revealing dynamical properties of individual liquid components in binary liquids has been carefully investigated. As far as the dynamical properties of the specific binary liquids, chosen as an example, are considered, it has been shown that in the presence of the second component (alanine, glycine, and aspartic acid), both molecular fractions undergo dynamics similar to that of glycerol in bulk.

6.
J Phys Chem B ; 128(11): 2773-2781, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38461422

RESUMO

1H spin-lattice relaxation experiments have been performed for water and glycerol/water solutions of H2N-Fe3O4 superparamagnetic nanoparticles (NPs) of about 7 nm diameter. The experiments encompass a broad frequency range covering 3 orders of magnitude, from 10 kHz to 10 MHz (referring to 1H resonance frequency), and have been performed in the temperature range from 298 to 313 K, varying the concentration of the superparamagnetic species. This extensive dataset has been used for twofold purposes. The first one is to serve as a challenge for thorough tests of theoretical models describing nuclear relaxation in solutions of superparamagnetic NPs, depending on their magnetic properties and dynamics of the solvent molecules. The challenge is posed by the wish to reproduce the data in a broad range of magnetic fields (not only at high fields) and by the need to explain the differences in the relaxation scenarios for water and glycerol/water solutions by varying only the solvent parameters. The second purpose is to get insights into the magnetic properties (electronic relaxation properties) of the nanoparticles due to their high applicational potential.

7.
J Phys Chem B ; 128(6): 1535-1543, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295281

RESUMO

1H spin-lattice nuclear magnetic resonance (NMR) relaxation experiments have been performed for water dispersions of functionalized silica nanoparticles of diameters of 25 and 45 nm. The experiments have been performed in a broad frequency range spanning 3 orders of magnitude, from 10 kHz to 10 MHz, versus temperature, from 313 to 263 K. On the basis of the data, two-dimensional translation diffusion (diffusion close to the nanoparticle surface within a layer of the order of a few diameters of water molecules) has been revealed. The translational correlation times as well as the residence life times on the nanoparticle surface have been determined. It has turned out that the residence lifetime is temperature-independent and is on the order of 5 × 10-6 s for the smaller nanoparticles and by about a factor of 3 longer for the larger ones. The translational correlation time for the case of 25 nm nanoparticles is also temperature-independent and yields about 6 × 10-7 s, while for the dispersion of the larger nanoparticles, the correlation times changed from about 8 × 10-7 s at 313 K to about 1.2 × 10-6 s at 263 K. In addition to the quantitative characterization of the two-dimensional translation diffusion, correlation times associated with bound water molecules have been determined. The studies have also given insights into the population of the bound and diffusing water on the surface water fractions.

8.
J Phys Chem B ; 127(41): 8950-8960, 2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37812396

RESUMO

Water dynamics in mesoporous dextran hydrogel micro/nanoparticles was investigated by means of nuclear magnetic resonance (NMR) techniques. High-resolution 1H NMR spectra and pulsed field gradient (PFG) NMR diffusometry measurements obtained on swollen state dextran micro/nanogel revealed the existence of different fractions of water molecules based on their interaction with the gel matrix. In addition to the translational diffusion of bulk water, two more diffusion processes characterized with self-diffusion coefficients 1 and 2 orders of magnitude smaller than that of bulk water were identified. 1H spin-lattice relaxation dispersion profiles obtained for a broad range of Larmor frequencies using fast field cycling (FFC) and conventional NMR relaxometry techniques allowed us to further clarify the mechanisms of molecular motion. According to the water proton pool fractions and associated self-diffusion coefficients, it is shown that the relaxation contribution associated with reorientation-mediated translational motions (RMTDs) dominates the relaxation dispersion observed at intermediate frequencies. At very low frequencies, the spin-lattice relaxation rate is dominated by the slow solid-gel dynamics probed by the water molecules interacting with the pores' surface hydroxyl groups due to the rapid chemical exchange between surface hydroxyl groups and free water. The correlation time for the thumbling-like motion of the dextran gel was found to be in the submillisecond range. The values of the self-diffusion and coherence lengths associated with motion of water molecules interacting with the solid-gel particles are consistent with the particle size and pore size distributions obtained for the studied dextran gels.

9.
ACS Appl Mater Interfaces ; 15(33): 39417-39425, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37555825

RESUMO

Ionic liquids (ILs), revealing a tendency to form self-assembled nanostructures, have emerged as promising materials in various applications, especially in energy storage and conversion. Despite multiple reports discussing the effect of structural factors and external thermodynamic variables on ion organization in a liquid state, little is known about the charge-transport mechanism through the self-assembled nanostructures and how it changes at elevated pressure. To address these issues, we chose three amphiphilic ionic liquids containing the same tetra(alkyl)phosphonium cation and anions differing in size and shape, i.e., thiocyanate [SCN]-, dicyanamide [DCA]-, and tricyanomethanide [TCM]-. From ambient pressure dielectric and mechanical experiments, we found that charge transport of all three examined ILs is viscosity-controlled at high temperatures. On the other hand, ion diffusion is much faster than structural dynamics in a nanostructured supercooled liquid (at T < 210 ± 3 K), which constitutes the first example of conductivity independent from viscosity in neat aprotic ILs. High-pressure measurements and MD simulations reveal that the created nanostructures depend on the anion size and can be modified by compression. For small anions, increasing pressure shapes immobile alkyl chains into lamellar-type phases, leading to increased anisotropic diffusivity of anions through channels. Bulky anions drive the formation of interconnected phases with continuous 3D curvature, which render ion transport independent of pressure. This work offers insight into the design of high-density electrolytes with percolating conductive phases providing efficient ion flow.

10.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903475

RESUMO

1H spin-lattice Nuclear Magnetic Resonance relaxation studies have been performed for different kinds of Haribo jelly and Vidal jelly in a very broad frequency range from about 10 kHz to 10 MHz to obtain insight into the dynamic and structural properties of jelly candies on the molecular level. This extensive data set has been thoroughly analyzed revealing three dynamic processes, referred to as slow, intermediate and fast dynamics occurring on the timescale of 10-6 s, 10-7 s and 10-8 s, respectively. The parameters have been compared for different kinds of jelly for the purpose of revealing their characteristic dynamic and structural properties as well as to enquire into how increasing temperature affects these properties. It has been shown that dynamic processes in different kinds of Haribo jelly are similar (this can be treated as a sign of their quality and authenticity) and that the fraction of confined water molecules is reduced with increasing temperature. Two groups of Vidal jelly have been identified. For the first one, the parameters (dipolar relaxation constants and correlation times) match those for Haribo jelly. For the second group including cherry jelly, considerable differences in the parameters characterizing their dynamic properties have been revealed.

11.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835511

RESUMO

1H spin-lattice relaxation experiments have been performed for water-Bovine Serum Albumin (BSA) mixtures, including 20%wt and 40%wt of BSA. The experiments have been carried out in a frequency range encompassing three orders of magnitude, from 10 kHz to 10 MHz, versus temperature. The relaxation data have been thoroughly analyzed in terms of several relaxation models with the purpose of revealing the mechanisms of water motion. For this purpose, four relaxation models have been used: the data have been decomposed into relaxation contributions expressed in terms of Lorentzian spectral densities, then three-dimensional translation diffusion has been assumed, next two-dimensional surface diffusion has been considered, and eventually, a model of surface diffusion mediated by acts of adsorption to the surface has been employed. In this way, it has been demonstrated that the last concept is the most plausible. Parameters describing the dynamics in a quantitative manner have been determined and discussed.


Assuntos
Imageamento por Ressonância Magnética , Água , Espectroscopia de Ressonância Magnética/métodos , Soroalbumina Bovina , Difusão
12.
ACS Appl Nano Mater ; 5(11): 16462-16474, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36569339

RESUMO

The combination of superparamagnetic iron oxide nanoparticles (SPIONs) and lipid matrices enables the integration of imaging, drug delivery, and therapy functionalities into smart theranostic nanocomposites. SPION confinement creates new interactions primarily among the embedded SPIONs and then between the nanocomposites and the surroundings. Understanding the parameters that rule these interactions in real interacting (nano)systems still represents a challenge, making it difficult to predict or even explain the final (magnetic) behavior of such systems. Herein, a systematic study focused on the performance of a magnetic nanocomposite as a magnetic resonance imaging (MRI) contrast agent and magnetic hyperthermia (MH) effector is presented. The effect of stabilizing agents and magnetic loading on the final physicochemical and, more importantly, functional properties (i.e., blocking temperature, specific absorption rate, relaxivity) was studied in detail.

13.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682674

RESUMO

19F Nuclear Magnetic Resonance spin-lattice relaxation experiments have been performed for a series of ionic liquids including the same anion, bis(trifluoromethanesulfonyl)imide, and cations with alkyl chains of different lengths: triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, dodecyltriethylammonium, decyltriethylammonium, and hexadecyltriethylammonium. The experiments have been carried out in a frequency range of 10 kHz to 10 MHz versus temperature. A thorough analysis of the relaxation data has led to the determination of the cation-anion as a relative translation diffusion coefficient. The diffusion coefficients have been compared with the corresponding cation-cation and anion-anion diffusion coefficients, revealing a correlation in the relative translation movement of the anion and the triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, and dodecyltriethylammonium cations, whereas the relative translation diffusion between the anion and the cations with the longer alkyl chains, decyltriethylammonium and hexadecyltriethylammonium, remains rather uncorrelated (correlated to a much lesser extent).


Assuntos
Líquidos Iônicos , Ânions , Cátions , Difusão , Imidas
14.
Molecules ; 27(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35408623

RESUMO

Starch-based confectionery products were prepared using different types of sugar. In addition to using different sugar, starch was replaced with soy protein isolate (SPI) in some of the products. 1H NMR spin-lattice relaxation experiments were performed for the collection of products in a broad frequency range from 4 KHz to 30 MHz to get insight into the influence of different sugar types and SPI on the dynamics of water in composite gel systems. The relaxation data have been decomposed into relaxation contributions associated with two different pools of water molecules characterized by different mobility. The translation dynamics of water molecules has been quantitatively described in terms of a dedicated relaxation model. The influence of the sample composition (the type of sugar and/or the presence of SPI) on the water mobility was thoroughly discussed. The results indicate that the addition of soy protein does not affect water dynamics for samples including sucrose. In addition, as the complementary measurements, physical properties of the products, such as the moisture content, water activity and texture, were investigated in terms of X-ray diffraction and thermogravimetric analysis.


Assuntos
Amido , Água , Espectroscopia de Ressonância Magnética , Proteínas de Soja/química , Amido/química , Açúcares , Água/química
15.
Int J Mol Sci ; 23(3)2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35163609

RESUMO

1H spin-lattice relaxation experiments have been performed for a series of ionic liquids including bis(trifluoromethanesulfonyl)imide anion and cations of a varying alkyl chain length: triethylhexylammonium, triethyloctylammonium, decyltriethylammonium, dodecyltriethylammonium, triethyltetradecylammonium, and hexadecyltriethylammonium. The relaxation studies were carried out in abroad frequency range covering three orders of magnitude, from 10 kHz to 10 MHz, versus temperature. On the basis of a thorough, quantitative analysis of this reach data set, parameters characterizing the relative, cation-cation, translation diffusion (relative diffusion coefficients and translational correlation times), and rotational motion of the cation (rotational correlation times) were determined. Relationships between these quantities and their dependence on the alkyl chain length were discussed in comparison to analogous properties of molecular liquids. It was shown, among other findings, that the ratio between the translational and rotational correlation times is smaller than for molecular liquids and considerably dependent on temperature. Moreover, a comparison of relative and self-diffusion coefficients indicate correlated translational dynamics of the cations.


Assuntos
Líquidos Iônicos/química , Compostos de Amônio Quaternário/química , Difusão , Espectroscopia de Ressonância Magnética , Relaxamento , Temperatura
16.
J Sci Food Agric ; 102(7): 2667-2675, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34713450

RESUMO

BACKGROUND: Adulteration is defined as the intentional addition of a material that is not a part of the nature. In this study, a non-conventional time domain nuclear magnetic resonance (TD-NMR) pulse sequence: magic sandwich echo (MSE) was used to detect the adulteration of honey by glucose syrup (GS) and high fructose corn syrup (HFCS) accompanied with T1 and T2 relaxation times. Also, fast field cycling NMR (FFC-NMR) relaxometry and multivariate analysis were performed to investigate the adulteration. RESULTS: Higher maltose in GS and changing glucose to water ratio of HFCS gave high correlation with the crystal content values. In HFCS adulteration, two separate populations of protons having different T2 values were detected and T1 times were also used to determine GS adulteration. Addition of GS increased T1 while addition of HFCS increased T2 , significantly. CONCLUSION: The results showed that it is possible to differentiate the unadulterated and adulterated honey samples by using TD-NMR relaxation times and crystal content values obtained by the MSE sequence. By FFC-NMR relaxometry, not only GS addition but also the amount of GS was examined. The multivariate analysis technique of principal component analysis was able to distinguish the types of adulterants. © 2021 Society of Chemical Industry.


Assuntos
Mel , Contaminação de Alimentos/análise , Glucose , Mel/análise , Espectroscopia de Ressonância Magnética , Zea mays/química
17.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34575838

RESUMO

Whey-protein-isolate-based composite hydrogels with encapsulated black carrot (Daucus carota) extract were prepared by heat-induced gelation. The hydrogels were blended with gum tragacanth, pectin and xanthan gum polysaccharides for modulating their properties. 1H spin-lattice relaxation experiments were performed in a broad frequency range, from 4 kHz to 30 MHz, to obtain insight into the influence of the different polysaccharides and of the presence of black carrot on dynamical properties of water molecules in the hydrogel network. The 1H spin-lattice relaxation data were decomposed into relaxation contributions associated with confined and free water fractions. The population of the confined water fraction and the value of the translation diffusion coefficient of water molecules in the vicinity of the macromolecular network were quantitatively determined on the basis of the relaxation data. Moreover, it was demonstrated that the translation diffusion is highly anisotropic (two-dimensional, 2D).


Assuntos
Hidrodinâmica , Hidrogéis/química , Espectroscopia de Ressonância Magnética , Água/química , Proteínas do Soro do Leite/química , Algoritmos , Fenômenos Químicos , Modelos Teóricos
18.
Int J Mol Sci ; 22(17)2021 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-34502026

RESUMO

1H and 19F spin-lattice relaxation experiments have been performed for butyltriethylammonium bis(trifluoromethanesulfonyl)imide in the temperature range from 258 to 298 K and the frequency range from 10 kHz to 10 MHz. The results have thoroughly been analysed in terms of a relaxation model taking into account relaxation pathways associated with 1H-1H, 19F-19F and 1H-19F dipole-dipole interactions, rendering relative translational diffusion coefficients for the pairs of ions: cation-cation, anion-anion and cation-anion, as well as the rotational correlation time of the cation. The relevance of the 1H-19F relaxation contribution to the 1H and 19F relaxation has been demonstrated. A comparison of the diffusion coefficients has revealed correlation effects in the relative cation-anion translational movement. It has also turned out that the translational movement of the anions is faster than of cations, especially at high temperatures. Moreover, the relative cation-cation diffusion coefficients have been compared with self-diffusion coefficients obtained by means of NMR (Nuclear Magnetic Resonance) gradient diffusometry. The comparison indicates correlation effects in the relative cation-cation translational dynamics-the effects become more pronounced with decreasing temperature.


Assuntos
Hidrocarbonetos Fluorados/química , Imidas/química , Líquidos Iônicos/química , Espectroscopia de Ressonância Magnética/métodos
19.
J Magn Reson ; 327: 106976, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33901897

RESUMO

1H Nuclear Magnetic Resonance relaxometry has been applied to reveal dynamical properties of water molecules embedded into egg yolk and white of three species: turkey, chicken and quail. Two fractions of water molecules, referred to as confined-water and free-water fractions, have been revealed. It has been demonstrated that translation diffusion of the confined-water fraction is three-dimensional. The dynamics of the confined-water has been quantitatively described in terms of diffusion coefficients and rotational correlation times. The parameters have been compared for egg yolk and white for all the species. In addition to these quantities, the number of the confined-water molecules per unit volume has been provided for all cases. The obtained parameters provide insight into the dynamics of water in eggs of different origin and allow to identify similarities and differences between them in connection to the structure of the network formed by the macromolecular fraction of egg yolk and white.


Assuntos
Imageamento por Ressonância Magnética , Água , Difusão , Ovos , Espectroscopia de Ressonância Magnética
20.
Materials (Basel) ; 15(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35009361

RESUMO

1H and 19F spin-lattice relaxation experiments have been performed for a series of ionic liquids sharing the same anion: bis(trifluoromethanesulfonyl)imide but including cations of different alkyl chain lengths: butyltriethylammonium, triethyloctylammonium, dodecyltriethylammo-nium and hexadecyltriethylammonium. The studies have been carried out in the temperature range from 383 to 108 K at the resonance frequency of 200 MHz (for 1H). A quantitative analysis of the relaxation data has revealed two dynamical processes for both kinds of ions. The dynamics have been successfully modeled in terms of the Arrhenius law. The timescales of the dynamical processes and their temperature evolution have been discussed in detail, depending on the structure of the cation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA