Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 23(11): 2856-2868, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27986745

RESUMO

Purpose: Anaplastic lymphoma kinase (ALK) is the most frequently mutated oncogene in the pediatric cancer neuroblastoma. We performed an in vitro screen for synergistic drug combinations that target neuroblastomas with mutations in ALK to determine whether drug combinations could enhance antitumor efficacy.Experimental Design: We screened combinations of eight molecularly targeted agents against 17 comprehensively characterized human neuroblastoma-derived cell lines. We investigated the combination of ceritinib and ribociclib on in vitro proliferation, cell cycle, viability, caspase activation, and the cyclin D/CDK4/CDK6/RB and pALK signaling networks in cell lines with representative ALK status. We performed in vivo trials in CB17 SCID mice bearing conventional and patient-derived xenograft models comparing ceritinib alone, ribociclib alone, and the combination, with plasma pharmacokinetics to evaluate for drug-drug interactions.Results: The combination of ribociclib, a dual inhibitor of cyclin-dependent kinase (CDK) 4 and 6, and the ALK inhibitor ceritinib demonstrated higher cytotoxicity (P = 0.008) and synergy scores (P = 0.006) in cell lines with ALK mutations as compared with cell lines lacking mutations or alterations in ALK Compared with either drug alone, combination therapy enhanced growth inhibition, cell-cycle arrest, and caspase-independent cell death. Combination therapy achieved complete regressions in neuroblastoma xenografts with ALK-F1174L and F1245C de novo resistance mutations and prevented the emergence of resistance. Murine ribociclib and ceritinib plasma concentrations were unaltered by combination therapy.Conclusions: This preclinical combination drug screen with in vivo validation has provided the rationale for a first-in-children trial of combination ceritinib and ribociclib in a molecularly selected pediatric population. Clin Cancer Res; 23(11); 2856-68. ©2016 AACR.


Assuntos
Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Neuroblastoma/tratamento farmacológico , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Aminopiridinas/administração & dosagem , Quinase do Linfoma Anaplásico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D/genética , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Sinergismo Farmacológico , Humanos , Camundongos , Mutação , Neuroblastoma/genética , Neuroblastoma/patologia , Purinas/administração & dosagem , Pirimidinas/administração & dosagem , Receptores Proteína Tirosina Quinases/genética , Proteína do Retinoblastoma/genética , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/administração & dosagem , Sulfonas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Clin Cancer Res ; 23(7): 1785-1796, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27729458

RESUMO

Purpose: Neuroblastoma is treated with aggressive multimodal therapy, yet more than 50% of patients experience relapse. We recently showed that relapsed neuroblastomas frequently harbor mutations leading to hyperactivated ERK signaling and sensitivity to MEK inhibition therapy. Here we sought to define a synergistic therapeutic partner to potentiate MEK inhibition.Experimental Design: We first surveyed 22 genetically annotated human neuroblastoma-derived cell lines (from 20 unique patients) for sensitivity to the MEK inhibitor binimetinib. After noting an inverse correlation with sensitivity to ribociclib (CDK4/6 inhibitor), we studied the combinatorial effect of these two agents using proliferation assays, cell-cycle analysis, Ki67 immunostaining, time-lapse microscopy, and xenograft studies.Results: Sensitivity to binimetinib and ribociclib was inversely related (r = -0.58, P = 0.009). MYCN amplification status and expression were associated with ribociclib sensitivity and binimetinib resistance, whereas increased MAPK signaling was the main determinant of binimetinib sensitivity and ribociclib resistance. Treatment with both compounds resulted in synergistic or additive cellular growth inhibition in all lines tested and significant inhibition of tumor growth in three of four xenograft models of neuroblastoma. The augmented growth inhibition was attributed to diminished cell-cycle progression that was reversible upon removal of drugs.Conclusions: Here we demonstrate that combined binimetinib and ribociclib treatment shows therapeutic synergy across a broad panel of high-risk neuroblastoma preclinical models. These data support testing this combination therapy in relapsed high-risk neuroblastoma patients, with focus on cases with hyperactivated RAS-MAPK signaling. Clin Cancer Res; 23(7); 1785-96. ©2016 AACR.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Inibidores de Proteínas Quinases/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Benzimidazóis/administração & dosagem , Proliferação de Células/efeitos dos fármacos , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Fosforilação , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Nucleic Acids Res ; 37(Database issue): D674-9, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18832364

RESUMO

The Pathway Interaction Database (PID, http://pid.nci.nih.gov) is a freely available collection of curated and peer-reviewed pathways composed of human molecular signaling and regulatory events and key cellular processes. Created in a collaboration between the US National Cancer Institute and Nature Publishing Group, the database serves as a research tool for the cancer research community and others interested in cellular pathways, such as neuroscientists, developmental biologists and immunologists. PID offers a range of search features to facilitate pathway exploration. Users can browse the predefined set of pathways or create interaction network maps centered on a single molecule or cellular process of interest. In addition, the batch query tool allows users to upload long list(s) of molecules, such as those derived from microarray experiments, and either overlay these molecules onto predefined pathways or visualize the complete molecular connectivity map. Users can also download molecule lists, citation lists and complete database content in extensible markup language (XML) and Biological Pathways Exchange (BioPAX) Level 2 format. The database is updated with new pathway content every month and supplemented by specially commissioned articles on the practical uses of other relevant online tools.


Assuntos
Fenômenos Fisiológicos Celulares , Bases de Dados Factuais , Transdução de Sinais , Transporte Biológico , Regulação da Expressão Gênica , Humanos , Internet , Mapeamento de Interação de Proteínas , Proteínas/química , Proteínas/metabolismo , RNA/química , RNA/metabolismo , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...