Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 14(16)2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36014934

RESUMO

Several corresponding regions of human and mammalian genomes have been shown to affect sensitivity to the manifestation of metabolic syndrome via nutrigenetic interactions. In this study, we assessed the effect of sucrose administration in a newly established congenic strain BN.SHR20, in which a limited segment of rat chromosome 20 from a metabolic syndrome model, spontaneously hypertensive rat (SHR), was introgressed into Brown Norway (BN) genomic background. We mapped the extent of the differential segment and compared the genomic sequences of BN vs. SHR within the segment in silico. The differential segment of SHR origin in BN.SHR20 spans about 9 Mb of the telomeric portion of the short arm of chromosome 20. We identified non-synonymous mutations e.g., in ApoM, Notch4, Slc39a7, Smim29 genes and other variations in or near genes associated with metabolic syndrome in human genome-wide association studies. Male rats of BN and BN.SHR20 strains were fed a standard diet for 18 weeks (control groups) or 16 weeks of standard diet followed by 14 days of high-sucrose diet (HSD). We assessed the morphometric and metabolic profiles of all groups. Adiposity significantly increased only in BN.SHR20 after HSD. Fasting glycemia and the glucose levels during the oral glucose tolerance test were higher in BN.SHR20 than in BN groups, while insulin levels were comparable. The fasting levels of triacylglycerols were the highest in sucrose-fed BN.SHR20, both compared to the sucrose-fed BN and the control BN.SHR20. The non-esterified fatty acids and total cholesterol concentrations were higher in BN.SHR20 compared to their respective BN groups, and the HSD elicited an increase in non-esterified fatty acids only in BN.SHR20. In a new genetically defined model, we have isolated a limited genomic region involved in nutrigenetic sensitization to sucrose-induced metabolic disturbances.


Assuntos
Proteínas de Transporte de Cátions , Hipertensão , Síndrome Metabólica , Animais , Apolipoproteínas M/genética , Proteínas de Transporte de Cátions/genética , Cromossomos Humanos Par 20/metabolismo , Jejum , Ácidos Graxos , Estudo de Associação Genômica Ampla , Humanos , Hipertensão/metabolismo , Masculino , Mamíferos/genética , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Nutrigenômica , Ratos , Ratos Endogâmicos BN , Ratos Endogâmicos SHR , Sacarose/efeitos adversos
2.
Artigo em Inglês | MEDLINE | ID: mdl-29731739

RESUMO

BACKGROUND: Glucocorticoids (GCs) are potent therapeutic agents frequently used for treatment of number of conditions, including hematologic, inflammatory, and allergic diseases. Both their therapeutic and adverse effects display significant interindividual variation, partially attributable to genetic factors. We have previously isolated a seven-gene region of rat chromosome 8 sensitizing to dexamethasone (DEX)-induced dyslipidemia and insulin resistance (IR) of skeletal muscle. Using two newly derived congenic strains, we aimed to investigate the effect of one of the prime candidates for this pharmacogenetic interaction, the Zbtb16 gene. METHODS: Adult male rats of SHR-Lx.PD5PD-Zbtb16 (n = 9) and SHR-Lx.PD5SHR-Zbtb16 (n = 8) were fed standard diet (STD) and subsequently treated with DEX in drinking water (2.6 µg/ml) for 3 days. The morphometric and metabolic profiles of both strains including oral glucose tolerance test, triacylglycerols (TGs), free fatty acids, insulin, and C-reactive protein levels were assessed before and after the DEX treatment. Insulin sensitivity of skeletal muscle and visceral adipose tissue was determined by incorporation of radioactively labeled glucose. RESULTS: The differential segment of SHR-Lx.PD5SHR-Zbtb16 rat strain spans 563 kb and contains six genes: Htr3a, Htr3b, Usp28, Zw10, Tmprss5, and part of Drd2. The SHR-Lx.PD5PD-Zbtb16 minimal congenic strain contains only Zbtb16 gene on SHR genomic background and its differential segment spans 254 kb. Total body weight was significantly increased in SHR-Lx.PD5PD-Zbtb16 strain compared with SHR-Lx.PD5SHR-Zbtb16 , however, no differences in the weights of adipose tissue depots were observed. While STD-fed rats of both strains did not show major differences in their metabolic profiles, after DEX treatment the SHR-Lx.PD5PD-Zbtb16 congenic strain showed increased levels of TGs, glucose, and blunted inhibition of lipolysis by insulin. Both basal and insulin-stimulated incorporation of radioactively labeled glucose into skeletal muscle glycogen were significantly reduced in SHR-Lx.PD5PD-Zbtb16 strain, but the insulin sensitivity of adipose tissue was comparable between the two strains. CONCLUSION: The metabolic disturbances including impaired glucose tolerance, dyslipidemia, and IR of skeletal muscle observed after DEX treatment in the congenic SHR-Lx.PD5PD-Zbtb16 reveal the Zbtb16 locus as a possible sensitizing factor for side effects of GC therapy.

3.
Lipids Health Dis ; 15(1): 199, 2016 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-27871290

RESUMO

BACKGROUND: Several members of connexin family of transmembrane proteins were previously implicated in distinct metabolic conditions. In this study we aimed to determine the effects of complete and heterozygous form of connexin50 gene (Gja8) mutation L7Q on metabolic profile and oxidative stress parameters in spontaneously hypertensive inbred rat strain (SHR). METHODS: Adult, standard chow-fed male rats of SHR, heterozygous SHR-Dca+/- and SHR-Dca-/- coisogenic strains were used. At the age of 4 months, dexamethasone (2.6 µg/ml) was administered in the drinking water for three days. The lipidemic profile (cholesterol and triacylglycerol concentration in 20 lipoprotein fractions, chylomicron, VLDL, LDL and HDL particle sizes) together with 33 cytokines and hormones in serum and several oxidative stress parameters in plasma, liver, kidney and heart were assessed. RESULTS: SHR and SHR-Dca-/- rats had similar concentrations of triacylglycerols and cholesterol in all major lipoprotein fractions. The heterozygotes reached significantly highest levels of total (SHR-Dca+/-: 51.3 ± 7.2 vs. SHR: 34.5 ± 2.4 and SHR-Dca-/-: 34.4 ± 2.5 mg/dl, p = 0.026), chylomicron and VLDL triacylglycerols. The heterozygotes showed significantly lowest values of HDL cholesterol (40.9 ± 2.3 mg/dl) compared both to SHR (51.8 ± 2.2 mg/dl) and SHR-Dca-/- (48.6 ± 2.7 mg/dl). Total and LDL cholesterol in SHR-Dca+/- was lower compared to SHR. Glucose tolerance was improved and insulin concentrations were lowest in SHR-Dca-/- (1.11 ± 0.20 pg/ml) in comparison with both SHR (2.32 ± 0.49 pg/ml) and SHR-Dca+/- (3.04 ± 0.21 pg/ml). The heterozygous rats showed profile suggestive of increased oxidative stress as well as highest serum concentrations of several pro-inflammatory cytokines including interleukins 6, 12, 17, 18 and tumor necrosis factor alpha. CONCLUSIONS: Our results demonstrate that connexin50 mutation in heterozygous state affects significantly the lipid profile and the oxidative stress parameters in the spontaneously hypertensive rat strain.


Assuntos
Conexinas/genética , Heterozigoto , Síndrome Metabólica/metabolismo , Mutação de Sentido Incorreto , Animais , Colesterol/sangue , Citocinas/sangue , Insulina/sangue , Masculino , Síndrome Metabólica/sangue , Síndrome Metabólica/genética , Estresse Oxidativo , Ratos , Ratos Endogâmicos SHR , Triglicerídeos/sangue
4.
PLoS One ; 11(3): e0152708, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27031336

RESUMO

Metabolic syndrome is a highly prevalent human disease with substantial genomic and environmental components. Previous studies indicate the presence of significant genetic determinants of several features of metabolic syndrome on rat chromosome 16 (RNO16) and the syntenic regions of human genome. We derived the SHR.BN16 congenic strain by introgression of a limited RNO16 region from the Brown Norway congenic strain (BN-Lx) into the genomic background of the spontaneously hypertensive rat (SHR) strain. We compared the morphometric, metabolic, and hemodynamic profiles of adult male SHR and SHR.BN16 rats. We also compared in silico the DNA sequences for the differential segment in the BN-Lx and SHR parental strains. SHR.BN16 congenic rats had significantly lower weight, decreased concentrations of total triglycerides and cholesterol, and improved glucose tolerance compared with SHR rats. The concentrations of insulin, free fatty acids, and adiponectin were comparable between the two strains. SHR.BN16 rats had significantly lower systolic (18-28 mmHg difference) and diastolic (10-15 mmHg difference) blood pressure throughout the experiment (repeated-measures ANOVA, P < 0.001). The differential segment spans approximately 22 Mb of the telomeric part of the short arm of RNO16. The in silico analyses revealed over 1200 DNA variants between the BN-Lx and SHR genomes in the SHR.BN16 differential segment, 44 of which lead to missense mutations, and only eight of which (in Asb14, Il17rd, Itih1, Syt15, Ercc6, RGD1564958, Tmem161a, and Gatad2a genes) are predicted to be damaging to the protein product. Furthermore, a number of genes within the RNO16 differential segment associated with metabolic syndrome components in human studies showed polymorphisms between SHR and BN-Lx (including Lpl, Nrg3, Pbx4, Cilp2, and Stab1). Our novel congenic rat model demonstrates that a limited genomic region on RNO16 in the SHR significantly affects many of the features of metabolic syndrome.


Assuntos
Animais Congênicos/genética , Cromossomos Humanos Par 16/genética , Síndrome Metabólica/genética , Ratos Endogâmicos BN/genética , Ratos Endogâmicos SHR/genética , Animais , Animais Congênicos/metabolismo , Animais Congênicos/fisiologia , Genoma , Teste de Tolerância a Glucose , Hemodinâmica , Humanos , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Metaboloma , Ratos Endogâmicos BN/metabolismo , Ratos Endogâmicos BN/fisiologia , Ratos Endogâmicos SHR/metabolismo , Ratos Endogâmicos SHR/fisiologia
5.
Lipids Health Dis ; 13: 172, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25403085

RESUMO

BACKGROUND: All-trans retinoic acid (ATRA, tretinoin) is a vitamin A derivative commonly used in the treatment of diverse conditions ranging from cancer to acne. In a fraction of predisposed individuals, the administration of ATRA is accompanied by variety of adverse metabolic effects, particularly by the induction of hyperlipidemia. We have previously derived a minimal congenic SHR.PD-(D8Rat42-D8Arb23)/Cub (SHR-Lx) strain sensitive to ATRA-induced increase of triacylglycerols and cholesterol under condition of high-sucrose diet. SHR-Lx differs only by 7 genes of polydactylous rat (PD/Cub) origin from its spontaneously hypertensive rat (SHR) progenitor strain. METHODS: Adult male rats of SHR and SHR-Lx strains were fed standard diet (STD) and experimental groups were subsequently treated with ATRA (15 mg/kg) via oral gavage for 16 days, while still on STD. We contrasted the metabolic profiles (including free fatty acids, triacylglycerols (TG) and cholesterol (C) in 20 lipoprotein fractions) between SHR and SHR-Lx under conditions of standard diet and standard diet + ATRA. We performed transcriptomic analysis of muscle tissue (m. soleus) in all groups using Affymetrix GeneChip Rat Gene 2.0 ST Arrays followed by Ingenuity Pathway Analysis and real-time PCR validation. RESULTS: In response to ATRA, SHR-Lx reacted with substantially greater rise in TG and C concentrations throughout the lipoprotein spectrum (two-way ANOVA strain * RA interaction significant for C content in chylomicrons (CM), VLDL and LDL as well as total, CM and HDL-TG). CONCLUSIONS: According to our modeling of metabolic and signalization pathways using differentially expressed genes we have identified a network with major nodes (including Sirt3, Il1b, Cpt1b and Pparg) likely to underlie the observed strain specific response to ATRA.


Assuntos
Dislipidemias/induzido quimicamente , Dislipidemias/genética , Transcriptoma , Animais , Dislipidemias/sangue , Metabolismo dos Lipídeos , Lipídeos/sangue , Masculino , Músculo Esquelético/metabolismo , Ratos Endogâmicos SHR , Tretinoína
6.
PLoS One ; 9(10): e109983, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25296178

RESUMO

The plasma profile of major lipoprotein classes and its subdivision into particular fractions plays a crucial role in the pathogenesis of atherosclerosis and is a major predictor of coronary artery disease. Our aim was to identify genomic determinants of triglyceride and cholesterol distribution into lipoprotein fractions and lipoprotein particle sizes in the recombinant inbred rat set PXO, in which alleles of two rat models of the metabolic syndrome (SHR and PD inbred strains) segregate together with those from Brown Norway rat strain. Adult male rats of 15 PXO strains (n = 8-13/strain) and two progenitor strains SHR-Lx (n = 13) and BXH2/Cub (n = 18) were subjected to one-week of high-sucrose diet feeding. We performed association analyses of triglyceride (TG) and cholesterol (C) concentrations in 20 lipoprotein fractions and the size of major classes of lipoprotein particles utilizing 704 polymorphic microsatellite markers, the genome-wide significance was validated by 2,000 permutations per trait. Subsequent in silico focusing of the identified quantitative trait loci was completed using a map of over 20,000 single nucleotide polymorphisms. In most of the phenotypes we identified substantial gradient among the strains (e.g. VLDL-TG from 5.6 to 66.7 mg/dl). We have identified 14 loci (encompassing 1 to 65 genes) on rat chromosomes 3, 4, 7, 8, 11 and 12 showing suggestive or significant association to one or more of the studied traits. PXO strains carrying the SHR allele displayed significantly higher values of the linked traits except for LDL-TG and adiposity index. Cholesterol concentrations in large, medium and very small LDL particles were significantly associated to a haplotype block spanning part of a single gene, low density lipoprotein receptor-related protein 1B (Lrp1b). Using genome-wide association we have identified new genetic determinants of triglyceride and cholesterol distribution into lipoprotein fractions in the recombinant inbred panel of rat model strains.


Assuntos
Colesterol/química , Genômica , Lipoproteínas/química , Triglicerídeos/química , Animais , Estudo de Associação Genômica Ampla , Masculino , Polimorfismo de Nucleotídeo Único , Ratos , Especificidade da Espécie
7.
Am J Hypertens ; 27(1): 99-106, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23975223

RESUMO

BACKGROUND: The spontaneously hypertensive rat (SHR) is the most widely used model of essential hypertension and is susceptible to left ventricular hypertrophy (LVH) and myocardial fibrosis. Recently, a quantitative trait locus (QTL) that influences heart interstitial fibrosis was mapped to chromosome 8. Our aim was to dissect the genetic basis of this QTL(s) predisposing SHR to hypertension, LVH, and interstitial fibrosis. METHODS: Hemodynamic and histomorphometric analyses were performed in genetically defined SHR.PD-chr.8 minimal congenic strain (PD5 subline) rats. RESULTS: The differential segment, genetically isolated within the PD5 subline, spans 788kb and contains 7 genes, including the promyelocytic leukemia zinc finger (Plzf) gene that has been implicated in hypertrophy and cardiac fibrosis. Mutant Plzf allele contains a 2,964-bp deletion in intron 2. The PD5 congenic strain, when compared with the SHR, showed significantly reduced systolic blood pressure by approximately 15mm Hg (P = 0.002), amelioration of LVH (0.23±0.02 vs. 0.39±0.02g/100g body weight; P < 0.00001), and reduced interstitial fibrosis (17,478±1,035 vs. 41,530±3,499 µm(2); P < 0.0001). The extent of amelioration of LVH and interstitial fibrosis was disproportionate to blood pressure decrease in congenic rats, suggesting an important role for genetic factors. Cardiac expression of Plzf was significantly reduced in prehypertensive (8 and 21 days) congenic animals compared with controls. CONCLUSIONS: These results provide compelling evidence of a significant role for genetic factors in regulating blood pressure, LVH, and cardiac fibrosis and identify mutant Plzf as a prominent candidate gene.


Assuntos
Proteínas de Ligação a DNA/genética , Hipertensão/genética , Hipertrofia Ventricular Esquerda/genética , Miocárdio/patologia , Animais , Animais Congênicos , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Fibrose , Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , Hemodinâmica/genética , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Fenótipo , Proteína com Dedos de Zinco da Leucemia Promielocítica , Locos de Características Quantitativas , Ratos , Ratos Endogâmicos SHR , Fatores de Tempo
8.
Neuro Endocrinol Lett ; 33 Suppl 2: 43-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23183509

RESUMO

OBJECTIVES: Ondansetron is an antagonist of 5-HT3 receptors mostly used as an antiemetic yet known to modulate metabolism and appetite. We tested the metabolic effects of ondansetron in newly derived congenic rat strain, carrying limited chromosome 8 regions of (PD) Brown Norway (BN) and polydactylous (PD) strain origins (including variant serotonin receptor Htr3b gene) within the genomic background of highly inbred model of metabolic syndrome, the spontaneously hypertensive rat (SHR). METHODS: Adult, standard diet-fed male rats of SHR and the congenic SHR.(PD/BN)8 strains received ondansetron (2mg/kg body weight/day) or vehicle (n=6/strain/treatment) via oral gavage for 14 days while we followed their metabolic and morphometric profiles including glucose tolerance and triacylgycerol and cholesterol concentrations in 20 lipoprotein fractions. RESULTS: We fine-mapped the chromosome 8 differential segment in the new SHR.(PD/BN)8 congenic strain: it comprises BN-derived region together with an adjacent 422kb stretch of PD origin. The SHR.(PD/BN)8 rats were heavier than SHR, the fasting glucose was significantly higher in ondansetron-treated congenic than in SHR (post-hoc Tukey's HSD p=0.02). Compared to SHR, ondansetron induced significantly more robust increases of cholesterol and triacylglycerol concentrations in total, chylomicron, VLDL and HDL particles in the SHR.(PD/BN)8 congenic strain. CONCLUSION: We established new congenic model with distinct pharmacogenetic profile related to metabolic effects of ondansetron, facilitating thus the search for responsible genetic variants within the limited genomic region demarcated by the differential segment.


Assuntos
Modelos Animais de Doenças , Hipertensão/tratamento farmacológico , Síndrome Metabólica/tratamento farmacológico , Ondansetron/farmacologia , Ratos Endogâmicos SHR , Antagonistas do Receptor 5-HT3 de Serotonina/farmacologia , Animais , Animais Congênicos , Cromossomos de Mamíferos , Intolerância à Glucose/tratamento farmacológico , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Lipídeos/sangue , Masculino , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Polidactilia/genética , Ratos , Ratos Endogâmicos BN , Receptores 5-HT3 de Serotonina/genética , Receptores 5-HT3 de Serotonina/metabolismo
9.
Lipids Health Dis ; 9: 38, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20398376

RESUMO

Dexamethasone (DEX) is known to induce diabetes and dyslipidemia. We have compared fasting triacylglycerol and cholesterol concentrations across 20 lipoprotein fractions and glucose tolerance in control (standard diet) and DEX-treated 7-month-old males of two rat strains, Brown Norway (BN) and congenic BN.SHR-(Il6-Cd36)/Cub (BN.SHR4). These two inbred strains differ in a defined segment of chromosome 4, originally transferred from the spontaneously hypertensive rat (SHR) including the mutant Cd36 gene, a known target of DEX. Compared to BN, the standard-diet-fed BN.SHR4 showed higher cholesterol and triacylglycerol concentrations across many lipoprotein fractions, particularly in small VLDL and LDL particles. Total cholesterol was decreased by DEX by more than 21% in BN.SHR4 contrasting with the tendency to increase in BN (strain*DEX interaction p = 0.0017). Similar pattern was observed for triacylglycerol concentrations in LDL. The LDL particle size was significantly reduced by DEX in both strains. Also, while control BN and BN.SHR4 displayed comparable glycaemic profiles during oral glucose tolerance test, we observed a markedly blunted DEX induction of glucose intolerance in BN.SHR4 compared to BN. In summary, we report a pharmacogenetic interaction between limited genomic segment with mutated Cd36 gene and dexamethasone-induced glucose intolerance and triacylglycerol and cholesterol redistribution into lipoprotein fractions.


Assuntos
Antígenos CD36/genética , Colesterol/metabolismo , Cromossomos/metabolismo , Dexametasona/farmacologia , Lipoproteínas/química , Triglicerídeos/metabolismo , Animais , Antígenos CD36/deficiência , Jejum , Intolerância à Glucose , Masculino , Mutação , Farmacogenética , Ratos , Ratos Endogâmicos SHR
10.
Pharmacogenomics ; 10(12): 1915-27, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19958091

RESUMO

AIMS: Therapeutic administration of retinoids is often accompanied with undesirable side effects, including an increase in lipid levels in up to 45% of treated patients. We tested the hypothesis of whether spontaneously hypertensive rat (SHR) and congenic SHR.PD-(D8Rat42-D8Arb23)/Cub (SHR-Lx) strains, differing only in a 14-gene region of chromosome 8 and previously shown to display differential sensitivity to the teratogenic effects of retinoic acid, could serve as a pharmacogenetic model set of the metabolic side effects of retinoid therapy. MATERIALS & METHODS: Male, 15-week old rats (n = 12/strain) of SHR and SHR-Lx strains were fed a high-sucrose diet for 2 weeks and subsequently treated either with all-trans retinoic acid (15 mg/kg) or only with a vehicle for 16 days (n = 6/strain/treatment), while still on the high-sucrose diet. We assessed the morphometric and metabolic profiles of all groups, including glucose tolerance tests, levels of insulin, adiponectin, free fatty acids, concentrations of triglycerides and cholesterol in 20 lipoprotein fractions under conditions of both high-sucrose diet and high-sucrose diet plus all-trans retinoic acid administration. RESULTS & CONCLUSION: SHR-Lx displayed substantially greater sensitivity to a number of all-trans retinoic acid-induced metabolic dysregulations compared with SHR, resulting in impairment of glucose tolerance, increased visceral adiposity, and substantially greater increase of circulating triglyceride concentrations, accompanied by a shift towards their less favorable distribution into the lipoprotein fractions. These observations closely mimic the common side effects of retinoid therapy in humans, rendering SHR-Lx an experimental pharmacogenetic model of atRA-induced dyslipidemia.


Assuntos
Modelos Animais de Doenças , Dislipidemias/genética , Hipertensão/genética , Resistência à Insulina/genética , Farmacogenética/métodos , Tretinoína/efeitos adversos , Animais , Animais Congênicos , Dislipidemias/sangue , Dislipidemias/etiologia , Teste de Tolerância a Glucose , Hipertensão/complicações , Metabolismo dos Lipídeos/genética , Masculino , Ratos , Ratos Endogâmicos SHR , Sacarose/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...