Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Mass Spectrom (Chichester) ; 14(6): 355-65, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19136724

RESUMO

Intra-molecular cross-linking has been suggested as a method of obtaining distance constraints that would help to develop structural models of proteins. Recent work published on intra-molecular cross-linking for protein structural studies has employed commercially available primary amine (lysine, the amino terminus) selective reagents. Previous work using these cross-linkers has shown that for several proteins of known structure, the number of cross-links that can be obtained experimentally may be small compared to what would be expected from the known structure, due to the relative reactivity, distribution and solvent accessibility of the lysines in the protein sequence. To overcome these limitations, we have investigated the use of cross-linking reagents that can react with other reactive side chains in proteins. We used 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) to activate the carboxylic acid containing residues, aspartic acid (D), glutamic acid (E) and the carboxy terminus (O), for cross-linking reactions. Once activated, the DEO side chains can react to form "zero-length" cross-links with nearby primary amine containing residues, lysines (K) and the amino terminus (X), via the formation of a new amide bond. We also show that the EDC-activated DEO side chains can be cross-linked to each other using dihydrazides, two hydrazide moieties connected by an alkyl cross-linker arm of variable length. Using these reagents, we have found three new "zero-length" cross-links in ubiquitin consistent with its known structure (M1-E16, M1-E18 and K63-E64). Using the dihydrazide cross-linkers, we have identified two new cross-links (D21-D32 and E24-D32) unambiguously. Using a library of dihydrazide cross-linkers with varying arm length, we have shown that there is a minimum arm length required for the DEO-DEO cross-links of 5.8 A. These results show that additional structural information can be obtained by exploiting new cross-linker chemistry, increasing the probability that the protein target will yield sufficient distance constraints to develop a structural model.


Assuntos
Reagentes de Ligações Cruzadas , Lisina/química , Espectrometria de Massas/métodos , Proteínas/química , Adipatos/química , Sequência de Aminoácidos , Reagentes de Ligações Cruzadas/química , Etildimetilaminopropil Carbodi-Imida/química , Modelos Moleculares , Ubiquitina/química
2.
Artigo em Inglês | MEDLINE | ID: mdl-19136727

RESUMO

Two nanostructured surfaces are introduced as advantageous substrates for desorption electrospray ionization mass spectrometry (DESI-MS). Nano-assisted laser desorption/ionization (NALDI) plates coated with silicon nanowires (SiNWs) and indium tin oxide (ITO) layers on glass are both conductive non-polar surfaces that were originally designed as superior substrates for matrix-free laser desorption/ionization. In this study, NALDI/SiNWs and ITO were tested as potentially useful DESI substrates for selected model analytes (cyclosporine, beauverolide, surfactin and nystatin). Both nanostructured surfaces produced more intense and longer-lasting signals than other tested surfaces (polytetrafluoroethylene, glass, polymethylmethacrylate and chromatography paper).


Assuntos
Nanofios , Silício/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Propriedades de Superfície , Compostos de Estanho/química , Ciclosporina/química , Nanoestruturas , Reprodutibilidade dos Testes , Incerteza
3.
Anal Chem ; 79(6): 2483-90, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17305312

RESUMO

Fluxes through known metabolic pathways and the presence of novel metabolic reactions are often determined by feeding isotopically labeled substrate to an organism and then determining the isotopomer distribution in amino acids in proteins. However, commonly used techniques to measure the isotopomer distributions require derivatization prior to analysis (gas chromatography/mass spectrometry (GC/MS)) or large sample sizes (nuclear magnetic resonance (NMR) spectroscopy). Here, we demonstrate the use of Fourier transform-ion cyclotron resonance mass spectrometry with direct infusion via electrospray ionization to rapidly measure the amino acid isotopomer distribution in a biomass hydrolysate of the soil bacterium Desulfovibrio vulgaris Hildenborough. By applying high front-end resolution for the precursor ion selection followed by sustained off-resonance irradiation collision-induced dissociation, it was possible to determine exactly and unambiguously the specific locations of the labeled atoms in the amino acids, which usually requires a combination of 2-D 13C NMR spectroscopy and GC/MS. This method should be generally applicable to all biomass samples and will allow more accurate determination of metabolic fluxes with less work and less sample.


Assuntos
Aminoácidos/análise , Aminoácidos/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Carbono/química , Isótopos de Carbono/química , Desulfovibrio vulgaris/química , Desulfovibrio vulgaris/metabolismo , Redes e Vias Metabólicas , Estrutura Molecular , Ácido Oxaloacético/química , Ácido Oxaloacético/metabolismo , Prótons
4.
Protein Sci ; 15(6): 1303-17, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16731966

RESUMO

Recent work using chemical cross-linking to define interresidue distance constraints in proteins has shown that these constraints are useful for testing tertiary structural models. We applied this approach to the G-protein-coupled receptor bovine rhodopsin in its native membrane using lysine- and cysteine-targeted bifunctional cross-linking reagents. Cross-linked proteolytic peptides of rhodopsin were identified by combined liquid chromatography and FT-ICR mass spectrometry with automated data-reduction and assignment software. Tandem mass spectrometry was used to verify cross-link assignments and locate the exact sites of cross-link attachment. Cross-links were observed to form between 10 pairs of residues in dark-state rhodopsin. For each pair, cross-linkers with a range of linker lengths were tested to determine an experimental distance-of-closest-approach (DCA) between reactive side-chain atoms. In all, 28 cross-links were identified using seven different cross-linking reagents. Molecular mechanics procedures were applied to published crystal structure data to calculate energetically achievable theoretical DCAs between reactive atoms without altering the position of the protein backbone. Experimentally measured DCAs are generally in good agreement with the theoretical DCAs. However, a cross-link between C316 and K325 in the C-terminal region cannot be rationalized by DCA simulations and suggests that backbone reorientation relative to the crystal coordinates occurs on the timescale of cross-linking reactions. Biochemical and spectroscopic data from other studies have found that the C-terminal region is highly mobile in solution and not fully represented by X-ray crystallography data. Our results show that chemical cross-linking can provide reliable three-dimensional structural information and insight into local conformational dynamics in a membrane protein.


Assuntos
Rodopsina/química , Sequência de Aminoácidos , Animais , Bovinos , Cromatografia Líquida , Reagentes de Ligações Cruzadas/química , Cristalografia por Raios X , Cisteína/química , Lisina/química , Espectrometria de Massas , Dados de Sequência Molecular , Conformação Proteica , Rodopsina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Succinimidas/química
5.
Anal Chem ; 77(16): 5101-6, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16097745

RESUMO

Fourier transform tandem mass spectrometry (FT-MS/MS) can be used to unambiguously assign intramolecular chemical cross-links to specific amino acid residues even when two or more possible cross-linking sites are adjacent in the cross-linked protein. Bovine rhodopsin (Rho) in its dark-adapted state was intramolecularly cross-linked with lysine-cysteine (K-C) or lysine-lysine (K-K) cross-linkers to obtain interatomic distance information. Large, multiply charged, cross-linked peptide ions containing adjacent lysines, corresponding to Rho(50-86) (K(66) or K(67)) cross-linked to Rho(310-317) (C(316)) or Rho(318-348) (K(325) or K(339)), were fragmented by collision-induced dissociation (CID), infrared multiphoton dissociation (IRMPD), and electron capture dissociation (ECD). Complementary sequence-specific information was obtained by combining cross-link assignments; however, only ECD revealed full palmitoylation of adjacent cysteines (C(322) and C(323)) and cross-linking of K(67) (and not K(66)) to C(316), K(325), and K(339). ECD spectra contained crucial c- and z-ions resulting from cleavage of the bond between K(66) and K(67). To our knowledge, this work also presents the first demonstration that ECD can be used to characterize S-linked fatty acid acylation on cysteines. The comprehensive fragmentation of large peptides by CID, IRMPD, and particularly ECD, in conjunction with the high resolution and mass accuracy of FT-MS/MS, is shown to be a valuable means of characterizing mammalian membrane proteins with both chemical and posttranslational modifications.


Assuntos
Análise de Fourier , Rodopsina/análise , Rodopsina/química , Espectrometria de Massas em Tandem/métodos , Sequência de Aminoácidos , Animais , Bovinos , Íons/química , Dados de Sequência Molecular , Segmento Externo da Célula Bastonete/química
6.
J Am Soc Mass Spectrom ; 15(11): 1604-11, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15519227

RESUMO

Chemical cross-linking of proteins combined with mass spectral analysis is a powerful technique that can be utilized to yield protein structural information, such as the spatial arrangement of multi-protein complexes or the folding of monomeric proteins. The succinimidyl ester cross-linking reagents are commonly used to cross-link primary amine-containing amino acids (N-terminus and lysine). However, in this study they were used to react with tyrosines as well, which allowed for the formation of cross-links between two primary amines, one primary amine and one tyrosine, or two tyrosines. This result is extremely important to the chemical cross-linking community for two reasons: (1) all possible cross-linked residues must be considered when analyzing data from these experiments to generate correct distance constraints and structural information, and (2) utilizing the versatility of these cross-linking reagents allows more information content to be generated from a single cross-linking reagent, which may increase the number of cross-links obtained in the experiment. Herein, we study the reactivity of the succinimidyl ester labeling and cross-linking reagents with angiotensin I and oxidized insulin beta-chain. Using the succinimidyl acetate labeling reagent, the reactivity of the N-terminus was found to be greater than either lysine or tyrosine. However, a selectivity of the cross-linking reagent was observed for either tyrosine or lysine depending on the pH of the reaction solution. In acidic pH, it was observed that tyrosine was more reactive, while in alkaline pH lysine was more reactive. Exploiting this selectivity predominantly N-terminus-tyrosine or tyrosine-tyrosine cross-links were favored at acidic pH, while N-terminus-tyrosine or tyrosine-lysine cross-links were favored at alkaline pH.


Assuntos
Reagentes de Ligações Cruzadas/química , Lisina/química , Tirosina/química , Angiotensina I/química , Insulina/química , Oxirredução , Espectrometria de Massas por Ionização por Electrospray/métodos
7.
Anal Chem ; 76(9): 2438-45, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15117181

RESUMO

A top-down approach based on sustained off-resonance irradiation collision-induced dissociation (SORI-CID) has been implemented on an electrospray ionization (ESI) Fourier transform mass spectrometer (FTMS) to characterize nucleic acid substrates modified by structural probes. Solvent accessibility reagents, such as dimethyl sulfate (DMS), 1-cyclohexyl-3-(2-morpholinoethyl)carbodiimide metho-p-toluenesulfonate (CMCT), and beta-ethoxy-alpha-ketobutyraldehyde (kethoxal, KT) are widely employed to reveal the position of single- vs double-stranded regions and obtain the footprint of bound proteins onto nucleic acids structures. Established methods require end-labeling of the nucleic acid constructs, probe-specific chemistry to produce strand cleavage at the modified nucleotides, and analysis by polyacrylamide gel electrophoresis to determine the position of the susceptible sites. However, these labor-intensive procedures can be avoided when mass spectrometry is used to identify the probe-induced modifications from their characteristic mass signatures. In particular, ESI-FTMS can be directly employed to monitor the conditions of probe application to avoid excessive alkylation, which could induce unwanted distortion or defolding of the substrate of interest. The sequence position of the covalent modifications can be subsequently obtained from classic tandem techniques, which allow for the analysis of individual target adducts present in complex reaction mixtures with no need for separation techniques. Selection and activation by SORI-CID has been employed to reveal the position of adducts in nucleic acid substrates in excess of 6 kDa. The stability of the different covalent modifications under SORI-CID conditions was investigated. Multiple stages of isolation and activation were employed in MS(n)() experiments to obtain the desired sequence information whenever the adduct stability was not particularly favorable, and SORI-CID induced the facile loss of the modified base. A new program called MS2Links was developed for the automated reduction and interpretation of fragmentation data obtained from modified nucleic acids. Based on an algorithm that searches for plausible isotopic patterns, the data reduction module is capable of discriminating legitimate signals from noise spikes of comparable intensity. The fragment identification module calculates the monoisotopic mass of ion products expected from a certain sequence and user-defined covalent modifications, which are finally matched with the signals selected by the data reduction program. Considering that MS2Links can generate similar fragment libraries for peptides and their covalent conjugates with other peptides or nucleic acids, this program provides an integrated platform for the structural investigation of protein-nucleic acid complexes based on cross-linking strategies and top-down ESI-FTMS.


Assuntos
CME-Carbodi-Imida/análogos & derivados , Bases de Dados Factuais , Ácidos Nucleicos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Aldeídos/química , Automação/métodos , Butanonas , CME-Carbodi-Imida/química , HIV-1/química , Ácidos Nucleicos/química , Sensibilidade e Especificidade , Ésteres do Ácido Sulfúrico/química
8.
J Mass Spectrom ; 39(3): 322-8, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15039940

RESUMO

We present a method employing top-down Fourier transform mass spectrometry (FTMS) for the rapid profiling of amino acid side-chain reactivity. The reactivity of side-chain groups can be used to infer residue-specific solvent accessibility and can also be used in the same way as H/D exchange reactions to probe protein structure and interactions. We probed the reactivity of the N-terminal and epsilon-lysine amino groups of ubiquitin by reaction with N-hydroxysuccinimidyl acetate (NHSAc), which specifically acetylates primary amines. Using a hybrid Q-FTMS instrument, we observed several series of multiply acetylated ubiquitin ions that varied with the NHSAc:protein stoichiometry. We isolated and fragmented each member of the series of acetylated ubiquitin ions in the front end of the instrument and measured the fragment ion masses in the FTMS analyzer cell to determine which residue positions were modified. As we increased the NHSAc:protein stoichiometric ratio, identification of the fragments from native protein and protein with successively increasing modification allowed the assignment of the complete order of reactivity of the primary amino groups in ubiquitin (Met 1 approximately Lys 6 approximately Lys 48 approximately Lys 63>Lys 33>Lys 11>Lys 27, Lys 29). These results are in excellent agreement with the reactivity expected from other studies and predicted from the known crystal structure of ubiquitin. The top-down approach eliminates the need for proteolytic digestion, high-performance liquid chromatographic separations and all other chemical steps except the labeling reaction, making it rapid and amenable to automation using small quantities of protein.


Assuntos
Análise de Fourier , Espectrometria de Massas/métodos , Ubiquitina/análise , Acetilação , Calibragem , Espectrometria de Massas/instrumentação , Peptídeos/análise , Peptídeos/química , Ubiquitina/química
9.
Rapid Commun Mass Spectrom ; 17(2): 155-62, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12512095

RESUMO

Mass spectrometric analysis of wild-type proteins that have been covalently modified by bifunctional cross-linking reagents and then digested proteolytically can be used to obtain low-resolution distance constraints, which can be useful for protein structure determination. Limitations of this approach include time-consuming separation steps, such as the separation of internally cross-linked protein monomers from covalent dimers, and a susceptibility to artifacts due to low levels of natural and man-made peptide modifications that can be mistaken for cross-linked species. The results presented here show that when a crude cross-linked protein mixture is injected into an electrospray ionization Fourier transform mass spectrometry (ESI-FTMS) instrument, the cross-link positions can be localized by fragmentation and mass spectrometry on the 'gas-phase purified' singly internally cross-linked monomer. Our results show that reaction of ubiquitin with the homobifunctional lysine-lysine cross-linking reagent dissuccinimidyl suberate (DSS) resulted in two cross-links consistent with the known ubiquitin tertiary structure (K6-K11 and K48-K63). Because no protein or peptide chemistry steps are needed, other than the initial cross-linking, this new top down approach appears well suited for high-throughput experiments with multiple cross-linkers and reaction conditions. Published in 2002 by John Wiley & Sons, Ltd.


Assuntos
Reagentes de Ligações Cruzadas/química , Análise de Fourier , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Ubiquitina/química
10.
Artigo em Inglês | MEDLINE | ID: mdl-15100473

RESUMO

In a preliminary communication we described a top-down approach to the determination of chemical cross-link location in proteins using Fourier transform mass spectrometry (FT-MS). We have since extended the approach to use a series of homobifunctional cross-linkers with the same reactive functional groups, but different cross-linker arm lengths. Correlating cross-linking data across a series of related linkers allows the distance constraint derived from a cross-link between two reactive side chains to be determined more accurately and increases the confidence in the assignment of the cross-links. In ubiquitin, there are seven lysines with primary amino groups and the amino terminus. Disuccinimidyl suberate (DSS, cross-linker arm length = 11.4 A), disuccinimidyl glutarate (DSG, cross-linker arm length = 7.5 A) and disuccinimidyl tartrate (DST, cross- linker arm length = 5.8 A) are homobifunctional cross-linking reagents that react specifically with primary amines. Using tandem mass spectrometry (MS/MS) on the singly, internally cross-linked precursor ion of ubiquitin, we found cross-links with DSS and DSG between the amino terminus and Lys 6, between Lys 6 and Lys 11, and between Lys 63 and Lys 48. Using disuccinimidyl tartrate (DST), the shortest cross-linker in the series, only the cross-links between the amino terminus and Lys 6, and between Lys 6 and Lys 11 were observed. The observed cross-links are consistent with the crystal structure of ubiquitin, if the lysine side chains and the amino terminus are assumed to have considerable flexibility. In a separate study, we probed the reactivity of the primary amino groups in ubiquitin using the amino acetylating reagent, N-hydroxy succinimidyl acetate (NHSAc), and a top-down approach to localize the acetylated lysine residues. The reactivity order obtained in that study (M1 approximate, equals K6 approximate, equals K48 approximate, equals K63) > K33 > K11 > (K27, K29), shows that the cross-link first formed in ubiquitin by reaction with DSS and DSG occurs between the most reactive residues.


Assuntos
Reagentes de Ligações Cruzadas/química , Análise de Fourier , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Conformação Proteica , Relação Estrutura-Atividade , Ubiquitina/química
11.
Anal Chem ; 74(11): 2608-11, 2002 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12069245

RESUMO

Through the use of ion-molecule reactions and SORI-CID, the phosphate position in hexose phosphate monosaccharides has been determined in the negative ion mode. Trimethyl borate was used as a reagent gas and was found to react readily with the phosphorylated hexose monosaccharides. After reaction of the reagent gas with the hexose phosphate, ion activation of the precursor by SORI-CID yielded different MS/MS spectra. Different diagnostic ions were generated for the two isomers, thus enabling differentiation and linkage position determination of the phosphate moiety.


Assuntos
Hexoses/análise , Monossacarídeos/análise , Análise de Fourier , Glucofosfatos/análise , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...