Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Breed ; 44(2): 7, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263978

RESUMO

Tiller number is a key component of wheat plant architecture having a direct impact on grain yield. Because of their viability, biotic resistance, and abiotic stress tolerance, wild relative species are a valuable gene source for increasing wheat genetic diversity, including yield potential. Agropyron glael, a perennial hybrid of Thinopyrum intermedium and Th. ponticum, was created in the 1930s. Recent genome analyses identified five evolutionarily distinct subgenomes (J, Jst, Jvs, Jr, and St), making A. glael an important gene source for transferring useful agronomical traits into wheat. During a bread wheat × A. glael crossing program, a genetically stable translocation line, WT153397, was developed. Sequential in situ hybridizations (McGISH) with J-, St-, and D-genomic DNA probes and pSc119.2, Afa family, pTa71, and (GAA)7 DNA repeats, as well as molecular markers specific for the wheat 6D chromosome, revealed the presence of a 6DS.6Jvs Robertsonian translocation in the genetic line. Field trials in low-input and high-input breeding nurseries over four growing seasons demonstrated the Agropyron chromosome arm's high compensating ability for the missing 6DL, as spike morphology and fertility of WT153397 did not differ significantly from those of wheat parents, Mv9kr1 and 'Mv Karizma.' Moreover, the introgressed 6Jvs chromosome arm significantly increased the number of productive tillers, resulting in a significantly higher grain yield potential compared to the parental wheat cultivars. The translocated chromosome could be highly purified by flow cytometric sorting due to the intense fluorescent labeling of (GAA)7 clusters on the Thinopyrum chromosome arm, providing an opportunity to use chromosome genomics to identify Agropyron gene variant(s) responsible for the tillering capacity. The translocation line WT153397 is an important genetic stock for functional genetic studies of tiller formation and useful breeding material for increasing wheat yield potential. The study also discusses the use of the translocation line in wheat breeding. Supplementary information: The online version contains supplementary material available at 10.1007/s11032-024-01439-y.

3.
Sci Rep ; 13(1): 20499, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993509

RESUMO

The annual goatgrass, Aegilops biuncialis is a rich source of genes with considerable agronomic value. This genetic potential can be exploited for wheat improvement through interspecific hybridization to increase stress resistance, grain quality and adaptability. However, the low throughput of cytogenetic selection hampers the development of alien introgressions. Using the sequence of flow-sorted chromosomes of diploid progenitors, the present study enabled the development of chromosome-specific markers. In total, 482 PCR markers were validated on wheat (Mv9kr1) and Ae. biuncialis (MvGB642) crossing partners, and 126 on wheat-Aegilops additions. Thirty-two markers specific for U- or M-chromosomes were used in combination with GISH and FISH for the screening of 44 Mv9kr1 × Ae. biuncialis BC3F3 genotypes. The predominance of chromosomes 4M and 5M, as well as the presence of chromosomal aberrations, may indicate that these chromosomes have a gametocidal effect. A new wheat-Ae. biuncialis disomic 4U addition, 4M(4D) and 5M(5D) substitutions, as well as several introgression lines were selected. Spike morphology and fertility indicated that the Aegilops 4M or 5M compensated well for the loss of 4D and 5D, respectively. The new cytogenetic stocks represent valuable genetic resources for the introgression of key genes alleles into wheat.


Assuntos
Aegilops , Triticum , Triticum/genética , Aegilops/genética , Hibridização in Situ Fluorescente , Cromossomos de Plantas/genética , Translocação Genética , Marcadores Genéticos , Genômica
4.
Front Plant Sci ; 13: 875676, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769292

RESUMO

Effective utilization of genetic diversity in wild relatives to improve wheat requires recombination between wheat and alien chromosomes. However, this is suppressed by the Pairing homoeologous gene, Ph1, on the long arm of wheat chromosome 5B. A deletion mutant of the Ph1 locus (ph1b) has been used widely to induce homoeologous recombination in wheat × alien hybrids. However, the original ph1b mutation, developed in Chinese Spring (CS) background has poor agronomic performance. Hence, alien introgression lines are first backcrossed with adapted wheat genotypes and after this step, alien chromosome segments are introduced into breeding lines. In this work, the ph1b mutation was transferred from two CSph1b mutants into winter wheat line Mv9kr1. Homozygous genotypes Mv9kr1 ph1b/ph1b exhibited improved plant and spike morphology compared to Chinese Spring. Flow cytometric chromosome analysis confirmed reduced DNA content of the mutant 5B chromosome in both wheat genotype relative to the wild type chromosome. The ph1b mutation in the Mv9kr1 genotype allowed wheat-alien chromosome pairing in meiosis of Mv9kr1ph1b_K × Aegilops biuncialis F1 hybrids, predominantly with the Mb-genome chromosomes of Aegilops relative to those of the Ub genome. High frequency of wheat-Aegilops chromosome interactions resulted in rearranged chromosomes identified in the new Mv9kr1ph1b × Ae. Biuncialis amphiploids, making these lines valuable sources for alien introgressions. The new Mv9kr1ph1b mutant genotype is a unique resource to support alien introgression breeding of hexaploid wheat.

5.
Int J Mol Sci ; 23(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35409181

RESUMO

Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high ß-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain ß-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with ß-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain ß-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods.


Assuntos
Aegilops , beta-Glucanas , Aegilops/genética , Fibras na Dieta , Genes de Plantas , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/genética , Água
6.
Front Plant Sci ; 11: 699, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670309

RESUMO

There is a wealth of resistance genes in the Mexican wild relative of cultivated Solanum, but very few of these species are sexually compatible with cultivated Solanum tuberosum. The most devastating disease of potato is late blight caused by the oomycete Phytophthora infestans (Pi). The wild hexaploid species S. demissum, which it is able to cross with potato, was used to transfer eleven race-specific genes by introgressive hybridization that were subsequently widely used in potato breeding. However, there are now more virulent races of Pi that can overcome all of these genes. The most sustainable strategy for protecting potatoes from late blight is to pyramid or stack broad-spectrum resistance genes into the cultivars. Recently four broad-spectrum genes (Rpi) conferring resistance to Pi were identified and cloned from the sexually incompatible species S. bulbocastanum: Rpi-blb1 (RB), Rpi-blb2, Rpi-blb3, and Rpi-bt1. For this research, a resistant S. bulbocastanum accession was selected carrying the genes Rpi-blb1 and Rpi-blb3 together with race-specific R3a and R3b genes. This accession was previously used to produce a large number of somatic hybrids (SHs) with five commercial potato cultivars using protoplast electrofusion. In this study, three SHs with cv. 'Delikat' were selected and backcross generations (i.e., BC1 and BC2) were obtained using cvs. 'Baltica', 'Quarta', 'Romanze', and 'Sarpo Mira'. Their assessment using gene-specific markers demonstrates that these genes are present in the SHs and their BC progenies. We identified plants carrying all four genes that were resistant to foliage blight in greenhouse and field trials. Functionality of the genes was shown by using agro-infiltration with the effectors of corresponding Avr genes. For a number of hybrids and BC clones yield and tuber number were not significantly different from that of the parent cultivar 'Delikat' in field trials. The evaluation of agronomic traits of selected BC2 clones and of their processing qualities revealed valuable material for breeding late blight durable resistant potato. We show that the combination of somatic hybridization with the additional use of gene specific markers and corresponding Avr effectors is an efficient approach for the successful identification and introgression of late blight resistance genes into the potato gene pool.

7.
Cytogenet Genome Res ; 160(1): 47-56, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32172236

RESUMO

The chromosomal constitution of 9 dwarf (D) and 8 semidwarf (SD) lines derived by crossing hexaploid Triticale line NA-75 (AABBRR, 2n = 6x = 42) with Triticumaestivum (AABBDD, 2n = 6x = 42) cv. Chinese Spring was investigated using molecular cytogenetic techniques: fluorescence in situ hybridization and genomic in situ hybridization. A wheat-rye translocation (T4DS.7RL), 8 substitution lines, and a ditelosomic addition line (7RSdt) were identified. In the substitution lines, 1, 2, or 4 pairs of wheat chromosomes, belonging to the A, B, or D genome, were replaced by rye chromosomes. Substitutions between chromosomes belonging to different wheat genomes [5B(5A), 1D(1B)] also occurred. The lines were genetically stable, each carrying 42 chromosomes, except the wheat-rye ditelosomic addition line, which carried 21 pairs of wheat chromosomes and 1 pair of rye telocentric chromosomes (7RS). The chromosome pairing behavior of the lines was studied during metaphase I of meiosis. The chromosome pairing level and the number of ring bivalents were different for each line. Besides rod bivalents, univalent and multivalent associations (tri- and quadrivalents) were also detected. The main goal of the experiment was to develop genetically stable wheat/Triticale recombinant lines carrying chromosomes/chromatin fragments originating from the R genome of Triticale line NA-75. Introgression of rye genes into hexaploid wheat can broaden its genetic diversity, and the newly developed lines can be used in wheat breeding programs.


Assuntos
Meiose/genética , Triticale/genética , Triticum/genética , Cromatina/metabolismo , Pareamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , Análise Citogenética , Genes de Plantas , Variação Genética , Hibridização In Situ , Hibridização in Situ Fluorescente , Metáfase , Ploidias , Secale/genética , Especificidade da Espécie , Translocação Genética
8.
Comp Cytogenet ; 10(2): 283-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27551349

RESUMO

Multicolour genomic in situ hybridization (mcGISH) using total genomic DNA probes from Thinopyrum bessarabicum (Savulescu & Rayss, 1923) Á. Löve, 1984 (genome J(b) or E(b), 2n = 14), and Pseudoroegneria spicata (Pursh, 1814) Á. Löve, 1980 (genome St, 2n = 14) was used to characterize the mitotic metaphase chromosomes of a synthetic hybrid of Thinopyrum intermedium (Host, 1805) Barkworth & D.R. Dewey, 1985 and Thinopyrum ponticum (Podpera, 1902) Z.-W. Liu et R.-C.Wang, 1993 named "Agropyron glael" and produced by N.V. Tsitsin in the former Soviet Union. The mcGISH pattern of this synthetic hybrid was compared to its parental wheatgrass species. Hexaploid Thinopyrum intermedium contained 19 J, 9 J(St) and 14 St chromosomes. The three analysed Thinopyrum ponticum accessions had different chromosome compositions: 43 J + 27 J(St) (PI531737), 40 J + 30 J(St) (VIR-44486) and 38 J + 32 J(St) (D-3494). The synthetic hybrid carried 18 J, 28 J(St) and 8 St chromosomes, including one pair of J-St translocation and/or decreased fluorescent intensity, resulting in unique hybridization patterns. Wheat line Mv9kr1 was crossed with the Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid in Hungary in order to transfer its advantageous agronomic traits (leaf rust and yellow rust resistance) into wheat. The chromosome composition of a wheat/A.glael F1 hybrid was 21 wheat + 28 wheatgrass (11 J + 14 J(St)+ 3 S). In the present study, mcGISH involving the simultaneous use of St and J genomic DNA as probes provided information about the type of Thinopyrum chromosomes in a Thinopyrum intermedium/Thinopyrum ponticum synthetic hybrid called A. glael.

9.
J Appl Genet ; 57(4): 427-437, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26922334

RESUMO

A Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid wheatgrass is an excellent source of leaf and stem rust resistance produced by N.V.Tsitsin. Wheat line Mv9kr1 was crossed with this hybrid (Agropyron glael) in Hungary in order to transfer its advantageous agronomic traits into wheat. As the wheat parent was susceptible to leaf rust, the transfer of resistance was easily recognizable in the progenies. Three different partial amphiploid lines with leaf rust resistance were selected from the wheat/Thinopyrum hybrid derivatives by multicolour genomic in situ hybridization. Chromosome counting on the partial amphiploids revealed 58 chromosomes (18 wheatgrass) in line 194, 56 (14 wheatgrass) in line 195 and 54 (12 wheatgrass) in line 196. The wheat chromosomes present in these lines were identified and the wheatgrass chromosomes were characterized by fluorescence in situ hybridization using the repetitive DNA probes Afa-family, pSc119.2 and pTa71. The 3D wheat chromosome was missing from the lines. Molecular marker analysis showed the presence of the Lr24 leaf rust resistance gene in lines 195 and 196. The morphological traits were evaluated in the field during two consecutive seasons in two different locations.


Assuntos
Resistência à Doença/genética , Hibridização Genética , Doenças das Plantas/genética , Poaceae/genética , Triticum/genética , Basidiomycota , Cromossomos de Plantas , Marcadores Genéticos , Hibridização in Situ Fluorescente , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
10.
Genome ; 57(2): 61-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24702063

RESUMO

3M(b) Triticum aestivum L. (Mv9kr1) - Aegilops biuncialis Vis. (MvGB642) addition lines were crossed with the Chinese Spring ph1b mutant genotype (CSph1b) to produce 3M(b)-wheat chromosome rearrangements. In the F3 generation, 3M(b)(4B) substitution lines and 3M(b).4BS centric fusions were identified with in situ hybridization using repetitive and genomic DNA probes, and with SSR markers. Grain micronutrient analysis showed that the investigated Ae. biuncialis accession MvGB382 and the parental line MvGB642 are suitable gene sources for improving the grain micronutrient content of wheat, as they have higher K, Zn, Fe, and Mn contents. The results suggested that the Ae. biuncialis chromosome 3M(b) carries genes determining the grain micronutrient content, as the 3M(b).4BS centric fusion had significantly higher Zn and Mn contents compared with the recipient wheat cultivar. As yield-related traits, such as the number of tillers, the length of main spike, and spikelets per main spike, were similar in the 3M(b).4BS centric fusion and the parental wheat genotype, it can be concluded that this line could be used in pre-breeding programs aimed at enriching elite wheat cultivars with essential micronutrients.


Assuntos
Cruzamentos Genéticos , Micronutrientes/análise , Valor Nutritivo/genética , Triticum/genética , Cruzamento , Cromossomos de Plantas , DNA de Plantas/análise , Genoma de Planta , Hibridização Genética , Hibridização in Situ Fluorescente , Ferro/metabolismo , Manganês/metabolismo , Repetições de Microssatélites/genética , Potássio/metabolismo , Recombinação Genética , Análise de Sequência de DNA , Translocação Genética , Zinco/metabolismo
11.
J Appl Genet ; 54(3): 251-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23749613

RESUMO

A spontaneous wheat-barley translocation line was previously detected in the progenies of the Mv9kr1 × 'Igri' wheat-barley hybrid and the translocation was identified as 5HS-7DS.7DL. Multicolor genomic in situ hybridization (mcGISH) with D and H genomic DNA probes and three-color fluorescence in situ hybridization (FISH) with repetitive DNA probes (Afa-family, pSc119.2, and pTa71) were performed to characterize the rearranged chromosome. The effect of 5HS and the deleted 7DS fragment on the morphological traits (plant height, fertility, yield, and spike characteristics) of wheat was assessed. Despite the non-compensating nature of the translocation, the plants showed good viability. The aim of the study was to physically localize SSR markers to the telomeric and subtelomeric regions of the 7DS chromosome arm. Of the 45 microsatellite markers analyzed, ten (Xbarc0184, Xwmc0506, Xgdm0130, Xgwm0735, Xgwm1258, Xgwm1123, Xgwm1250, Xgwm1055, Xgwm1220, and Xgwm0635) failed to amplify any 7DS-specific fragments, signaling the elimination of a short chromosome segment in the telomeric region. The breakpoint of the 5HS-7DS.7DL translocation appeared to be more distal than that of reported deletion lines, which provides a new physical landmark for future deletion mapping studies.


Assuntos
Cromossomos de Plantas , Genes de Plantas , Hordeum/genética , Translocação Genética , Triticum/genética , Sondas de DNA/genética , Deleção de Genes , Marcadores Genéticos , Hibridização In Situ , Hibridização in Situ Fluorescente , Repetições de Microssatélites/genética , Fenótipo , Mapeamento Físico do Cromossomo
12.
Genome ; 55(4): 302-11, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22439846

RESUMO

To increase the allelic variation in wheat-barley introgressions, new wheat-barley disomic addition lines were developed containing the 2H, 3H, 4H, 6H, and 7H chromosomes of the six-rowed Ukrainian winter barley 'Manas'. This cultivar is agronomically much better adapted to Central European environmental conditions than the two-rowed spring barley 'Betzes' previously used. A single 'Asakaze' × 'Manas' wheat × barley hybrid plant was multiplied in vitro and one backcross plant was obtained after pollinating 354 regenerant hybrids with wheat. The addition lines were selected from the self-fertilized seeds of the 16 BC(2) plants using genomic in situ hybridization. The addition lines were identified by fluorescence in situ hybridization using repetitive DNA probes (HvT01, GAA, pTa71, and Afa family), followed by confirmation with barley SSR markers. The addition lines were grown in the phytotron and in the field, and morphological parameters (plant height, fertility, tillering, and spike characteristics) were measured. The production of the disomic additions will make it possible to incorporate the DNA of six-rowed winter barley into the wheat genome. Addition lines are useful for genetic studies on the traits of six-rowed winter barley and for producing new barley dissection lines.


Assuntos
Cruzamentos Genéticos , Hordeum/genética , Fenótipo , Triticum/genética , Cromossomos de Plantas , Sequências Repetitivas de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...