Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1531, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233450

RESUMO

Lipopeptides, derived from microorganisms, are promising surface-active compounds known as biosurfactants. However, the high production costs of biosurfactants, associated with expensive culture media and purification processes, limit widespread industrial application. To enhance the sustainability of biosurfactant production, researchers have explored cost-effective substrates. In this study, crude glycerol was evaluated as a promising and economical carbon source in viscosinamide production by Pseudomonas fluorescens DR54. Optimization studies using the Box - Behnken design and response surface methodology were performed. Optimal conditions for viscosinamide production including glycerol 70.8 g/L, leucine 2.7 g/L, phosphate 3.7 g/L, and urea 9.3 g/L were identified. Yield of viscosinamide production, performed under optimal conditions, reached 7.18 ± 0.17 g/L. Preliminary characterization of viscosinamide involved the measurement of surface tension. The critical micelle concentration of lipopeptide was determined to be 5 mg/L. Furthermore, the interactions between the viscosinamide and lipase from Candida rugosa (CRL) were investigated by evaluating the impact of viscosinamide on lipase activity and measuring circular dichroism. It was observed that the α-helicity of CRL increases with increasing viscosinamide concentration, while the random coil structure decreases.


Assuntos
Peptídeos Cíclicos , Pseudomonas fluorescens , Glicerol , Tensoativos/química , Lipopeptídeos , Lipase
2.
RSC Adv ; 13(34): 24129-24139, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37577095

RESUMO

Pseudomonas is a cosmopolitan genus of bacteria found in soil, water, organic matter, plants and animals and known for the production of glycolipid and lipopeptide biosurfactants. In this study bacteria (laboratory collection number 28E) isolated from soil collected in Spitsbergen were used for biosurfactant production. 16S rRNA sequencing and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) revealed that this isolate belongs to the species Pseudomonas antarctica. In the present study, crude glycerol, a raw material obtained from several industrial processes, was evaluated as a potential low-cost carbon source to reduce the costs of lipopeptide production. Among several tested glycerols, a waste product of stearin production, rich in nitrogen, iron and calcium, ensured optimal conditions for bacterial growth. Biosurfactant production was evidenced by a reduction of surface tension (ST) and an increase in the emulsification index (E24%). According to Fourier-transform infrared spectroscopy (FTIR) and electrospray ionization mass spectrometry (ESI-MS), the biosurfactant was identified as viscosin. The critical micelle concentration (CMC) of lipopeptide was determined to be 20 mg L-1. Interestingly, viscosin production has been reported previously for Pseudomonas viscosa, Pseudomonas fluorescens and Pseudomonas libanensis. To the best of our knowledge, this is the first report on viscosin production by a P. antarctica 28E. The results indicated the potential of crude glycerol as a low-cost substrate to produce a lipopeptide biosurfactant with promising tensioactive and emulsifying properties.

3.
Ultrason Sonochem ; 84: 105962, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35259571

RESUMO

Although numerous studies have been implemented on identifying the impact of acoustic waves on mineral beneficiation, its fundamental aspects remain unclear in the literature. The present work, for the first time, systematically investigates the role of ultrasound pre-treatment (UPT) in the carbonaceous copper-bearing shale flotation. To this end, conditioning was carried out at different powers of applied ultrasound. Non-treated and UPT shale flotation tests were performed in the presence of frother (MIBC) and collector (KEX). To analyse particle surface charge variation and collector adsorption properties after application of UPT, zeta potential and ultraviolet-visible spectroscopy measurements were implemented, respectively. The generation of sub-micron bubbles due to the acoustic cavitation was characterised by laser-based particle size measurements. Shale hydrophobicity was determined using the sessile drop and captive bubble techniques. The micro-flotation results showed that the mass recovery increased by 40% at 20 W of applied ultrasonic power. The positive effect of UPT on the copper-bearing shale flotation was related to: i) generation of ultrafine bubbles due to the acoustic cavitation phenomenon and ii) the cleaning effect through transient bubble collapse. However, rigorous ultra-sonication diminished the recoverability of the sample owing to the less intensified number of ultrafine bubbles on the particle surfaces and formation of free H and OH radicals, which led to the oxidation of particle surfaces. These statements were correlated well with the observations of the zeta potential, particle size analysis and quantified ultrafine bubbles. Finally, we briefly highlighted fundamental knowledge gaps in flotation and ultrasound-related issues for future work.


Assuntos
Cobre , Minerais , Acústica , Tamanho da Partícula , Sonicação
4.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638932

RESUMO

In this paper, we describe an application of mono- and dirhamnolipid homologue mixtures of a biosurfactant as a green agent for destabilisation of a dolomite suspension. Properties of the biosurfactant solution were characterised using surface tension and aggregate measurements to prove aggregation of rhamnolipids at concentrations much lower than the critical micelle concentration. Based on this information, the adsorption process of biosurfactant molecules on the surface of the carbonate mineral dolomite was investigated, and the adsorption mechanism was proposed. The stability of the dolomite suspension after rhamnolipid adsorption was investigated by turbidimetry. The critical concentration of rhamnolipid at which destabilisation of the suspension occurred most effectively was found to be 50 mg·dm-3. By analysing backscattering profiles, solid-phase migration velocities were calculated. With different amounts of biomolecules, this parameter can be modified from 6.66 to 20.29 mm·h-1. Our study indicates that the dolomite suspension is destabilised by hydrophobic coagulation, which was proved by examining the wetting angle of the mineral surface using the captive bubble technique. The relatively low amount of biosurfactant used to destabilise the system indicates the potential application of this technology for water treatment or modification of the hydrophobicity of mineral surfaces in mineral engineering.


Assuntos
Carbonato de Cálcio/química , Glicolipídeos/química , Magnésio/química , Tensoativos/química , Suspensões/química , Adsorção , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Micelas , Nefelometria e Turbidimetria/métodos , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Propriedades de Superfície , Tensão Superficial , Termodinâmica , Água/química , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...