Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 2(4)2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713858

RESUMO

The critical virulence factor of bloodstream-form Trypanosoma brucei is the glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG). Endoplasmic reticulum (ER) exit of VSG is GPI dependent and relies on a discrete subset of COPII machinery (TbSec23.2/TbSec24.1). In other systems, p24 transmembrane adaptor proteins selectively recruit GPI-anchored cargo into nascent COPII vesicles. Trypanosomes have eight putative p24s (TbERP1 to TbERP8) that are constitutively expressed at the mRNA level. However, only four TbERP proteins (TbERP1, -2, -3, and -8) are detectable in bloodstream-form parasites. All four colocalize to ER exit sites, are required for efficient GPI-dependent ER exit, and are interdependent for steady-state stability. These results suggest shared function as an oligomeric ER GPI-cargo receptor. This cohort also mediates rapid forward trafficking of the soluble lysosomal hydrolase TbCatL. Procyclic insect-stage trypanosomes have a distinct surface protein, procyclin, bearing a different GPI anchor structure. A separate cohort of TbERP proteins (TbERP1, -2, -4, and -8) are expressed in procyclic parasites and also function in GPI-dependent ER exit. Collectively, these results suggest developmentally regulated TbERP cohorts, likely in obligate assemblies, that may recognize stage-specific GPI anchors to facilitate GPI-cargo trafficking throughout the parasite life cycle. IMPORTANCE African trypanosomes are protozoan parasites that cause African sleeping sickness. Critical to the success of the parasite is the variant surface glycoprotein (VSG), which covers the parasite cell surface and which is essential for evasion of the host immune system. VSG is membrane bound by a glycolipid (GPI) anchor that is attached in the earliest compartment of the secretory pathway, the endoplasmic reticulum (ER). We have previously shown that the anchor acts as a positive forward trafficking signal for ER exit, implying a cognate receptor mechanism for GPI recognition and loading in coated cargo vesicles leaving the ER. Here, we characterize a family of small transmembrane proteins that act at adaptors for this process. This work adds to our understanding of general GPI function in eukaryotic cells and specifically in the synthesis and transport of the critical virulence factor of pathogenic African trypanosomes.

2.
Mol Biochem Parasitol ; 214: 52-61, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28356223

RESUMO

Protein trafficking through endo/lysosomal compartments is critically important to the biology of the protozoan parasite Trypanosoma brucei, but the routes material may take to the lysosome, as well as the molecular factors regulating those routes, remain incompletely understood. Phosphoinositides are signaling phospholipids that regulate many trafficking events by recruiting specific effector proteins to discrete membrane subdomains. In this study, we investigate the role of one phosphoinositide, PI(3,5)P2 in T. brucei. We find a low steady state level of PI(3,5)P2 in bloodstream form parasites comparable to that of other organisms. RNAi knockdown of the putative PI(3)P-5 kinase TbFab1 decreases the PI(3,5)P2 pool leading to rapid cell death. TbFab1 and PI(3,5)P2 both localize strongly to late endo/lysosomes. While most trafficking functions were intact in TbFab1 deficient cells, including both endocytic and biosynthetic trafficking to the lysosome, lysosomal turnover of an endogenous ubiquitinylated membrane protein, ISG65, was completely blocked suggesting that TbFab1 plays a role in the ESCRT-mediated late endosomal/multivesicular body degradative pathways. Knockdown of a second component of PI(3,5)P2 metabolism, the PI(3,5)P2 phosphatase TbFig4, also resulted in delayed turnover of ISG65. Together, these results demonstrate an essential role for PI(3,5)P2 in the turnover of ubiquitinylated membrane proteins and in trypanosome endomembrane biology.


Assuntos
Endossomos/enzimologia , Lisossomos/enzimologia , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Trypanosoma brucei brucei/enzimologia , Endossomos/metabolismo , Lisossomos/metabolismo , Transporte Proteico , Trypanosoma brucei brucei/metabolismo
3.
Mol Microbiol ; 95(5): 804-18, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25476490

RESUMO

In the yeast Saccharomyces cerevisiae, the regulation of cell types by homeodomain transcription factors is a key paradigm; however, many questions remain regarding this class of developmental regulators in other fungi. In the human fungal pathogen Cryptococcus neoformans, the homeodomain transcription factors Sxi1α and Sxi2a are required for sexual development that produces infectious spores, but the molecular mechanisms by which they drive this process are unknown. To better understand homeodomain control of fungal development, we determined the targets of the Sxi2a-Sxi1α heterodimer using whole genome expression analyses paired with in silico and in vitro binding site identification methods. We identified Sxi-regulated genes that contained a site bound directly by the Sxi proteins that is required for full regulation in vivo. Among the targets of the Sxi2a-Sxi1α complex were many genes known to be involved in sexual reproduction, as well as several well-studied virulence genes. Our findings suggest that genes involved in sexual development are also important in mammalian disease. Our work advances the understanding of how homeodomain transcription factors control complex developmental events and suggests an intimate link between fungal development and virulence.


Assuntos
Cryptococcus neoformans/crescimento & desenvolvimento , Cryptococcus neoformans/patogenicidade , Genes Fúngicos , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Biologia Computacional , Simulação por Computador , Expressão Gênica , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Proteínas de Homeodomínio/química , Humanos , Fatores de Transcrição/química , Virulência
4.
J Biol Chem ; 288(15): 10599-615, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23443657

RESUMO

Nucleotide sugar transporters (NSTs) are indispensible for the biosynthesis of glycoproteins by providing the nucleotide sugars needed for glycosylation in the lumen of the Golgi apparatus. Mutations in NST genes cause human and cattle diseases and impaired cell walls of yeast and fungi. Information regarding their function in the protozoan parasite, Trypanosoma brucei, a causative agent of African trypanosomiasis, is unknown. Here, we characterized the substrate specificities of four NSTs, TbNST1-4, which are expressed in both the insect procyclic form (PCF) and mammalian bloodstream form (BSF) stages. TbNST1/2 transports UDP-Gal/UDP-GlcNAc, TbNST3 transports GDP-Man, and TbNST4 transports UDP-GlcNAc, UDP-GalNAc, and GDP-Man. TbNST4 is the first NST shown to transport both pyrimidine and purine nucleotide sugars and is demonstrated here to be localized at the Golgi apparatus. RNAi-mediated silencing of TbNST4 in the procyclic form caused underglycosylated surface glycoprotein EP-procyclin. Similarly, defective glycosylation of the variant surface glycoprotein (VSG221) as well as the lysosomal membrane protein p67 was observed in Δtbnst4 BSF T. brucei. Relative infectivity analysis showed that defects in glycosylation of the surface coat resulting from tbnst4 deletion were insufficient to impact the ability of this parasite to infect mice. Notably, the fact that inactivation of a single NST gene results in measurable defects in surface glycoproteins in different life cycle stages of the parasite highlights the essential role of NST(s) in glycosylation of T. brucei. Thus, results presented in this study provide a framework for conducting functional analyses of other NSTs identified in T. brucei.


Assuntos
Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Bovinos , Glicosilação , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/genética , Tripanossomíase Africana/metabolismo
5.
Genetics ; 191(2): 435-49, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22466042

RESUMO

The fundamental mechanisms that control eukaryotic development include extensive regulation at the level of transcription. Gene regulatory networks, composed of transcription factors, their binding sites in DNA, and their target genes, are responsible for executing transcriptional programs. While divergence of these control networks drives species-specific gene expression that contributes to biological diversity, little is known about the mechanisms by which these networks evolve. To investigate how network evolution has occurred in fungi, we used a combination of microarray expression profiling, cis-element identification, and transcription-factor characterization during sexual development of the human fungal pathogen Cryptococcus neoformans. We first defined the major gene expression changes that occur over time throughout sexual development. Through subsequent bioinformatic and molecular genetic analyses, we identified and functionally characterized the C. neoformans pheromone-response element (PRE). We then discovered that transcriptional activation via the PRE requires direct binding of the high-mobility transcription factor Mat2, which we conclude functions as the elusive C. neoformans pheromone-response factor. This function of Mat2 distinguishes the mechanism of regulation through the PRE of C. neoformans from all other fungal systems studied to date and reveals species-specific adaptations of a fungal transcription factor that defies predictions on the basis of sequence alone. Overall, our findings reveal that pheromone-response network rewiring has occurred at the level of transcription factor identity, despite the strong conservation of upstream and downstream components, and serve as a model for how selection pressures act differently on signaling vs. gene regulatory components during eukaryotic evolution.


Assuntos
Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Feromônios/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Bases , Análise por Conglomerados , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Motivos de Nucleotídeos , Elementos Reguladores de Transcrição , Transdução de Sinais , Transcrição Gênica , Ativação Transcricional
6.
Curr Opin Microbiol ; 13(6): 706-11, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21036099

RESUMO

The dikaryons of basidiomycete fungi represent an unusual cell type required for complete sexual development. Dikaryon formation occurs via the activities of cell type-specific homeodomain transcription factors, which form regulatory complexes to establish the dikaryotic state. Decades of classical genetic and cell biological studies in mushrooms have provided a foundation for more recent molecular studies in the pathogenic species Ustilago maydis and Cryptococcus neoformans. Studies in these systems have revealed novel mechanisms of regulation that function downstream of classic homeodomain complexes to ensure that dikaryons are established and propagated. Comparisons of these dikaryon-specific networks promise to reveal the nature of regulatory network evolution and the adaptations responsible for driving complex eukaryotic development.


Assuntos
Cryptococcus neoformans/citologia , Cryptococcus neoformans/crescimento & desenvolvimento , Ustilago/citologia , Ustilago/crescimento & desenvolvimento , Cryptococcus neoformans/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Modelos Biológicos , Ustilago/genética
7.
PLoS Genet ; 6(2): e1000860, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20195516

RESUMO

Cell type specification is a fundamental process that all cells must carry out to ensure appropriate behaviors in response to environmental stimuli. In fungi, cell identity is critical for defining "sexes" known as mating types and is controlled by components of mating type (MAT) loci. MAT-encoded genes function to define sexes via two distinct paradigms: 1) by controlling transcription of components common to both sexes, or 2) by expressing specially encoded factors (pheromones and their receptors) that differ between mating types. The human fungal pathogen Cryptococcus neoformans has two mating types (a and alpha) that are specified by an extremely unusual MAT locus. The complex architecture of this locus makes it impossible to predict which paradigm governs mating type. To identify the mechanism by which the C. neoformans sexes are determined, we created strains in which the pheromone and pheromone receptor from one mating type (a) replaced the pheromone and pheromone receptor of the other (alpha). We discovered that these "alpha(a)" cells effectively adopt a new mating type (that of a cells); they sense and respond to alpha factor, they elicit a mating response from alpha cells, and they fuse with alpha cells. In addition, alpha(a) cells lose the alpha cell type-specific response to pheromone and do not form germ tubes, instead remaining spherical like a cells. Finally, we discovered that exogenous expression of the diploid/dikaryon-specific transcription factor Sxi2a could then promote complete sexual development in crosses between alpha and alpha(a) strains. These data reveal that cell identity in C. neoformans is controlled fully by three kinds of MAT-encoded proteins: pheromones, pheromone receptors, and homeodomain proteins. Our findings establish the mechanisms for maintenance of distinct cell types and subsequent developmental behaviors in this unusual human fungal pathogen.


Assuntos
Alelos , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Genes Fúngicos Tipo Acasalamento/genética , Feromônios/metabolismo , Receptores de Feromônios/metabolismo , Northern Blotting , Southern Blotting , Cruzamentos Genéticos , Cryptococcus neoformans/citologia , Carpóforos/citologia , Carpóforos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Reprodução
8.
Fungal Genet Biol ; 47(4): 310-7, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20044015

RESUMO

During sexual development the human fungal pathogen Cryptococcus neoformans undergoes a developmental transition from yeast-form growth to filamentous growth. This transition requires cellular restructuring to form a filamentous dikaryon. Dikaryotic growth also requires tightly controlled nuclear migration to ensure faithful replication and dissemination of genetic material to spore progeny. Although the gross morphological changes that take place during dikaryotic growth are largely known, the molecular underpinnings that control this process are uncharacterized. Here we identify and characterize a C. neoformans homolog of the Saccharomyces cerevisiae BIM1 gene, and establish the importance of BIM1 for proper filamentous growth of C. neoformans. Deletion of BIM1 leads to truncated sexual development filaments, a severe defect in diploid formation, and a block in monokaryotic fruiting. Our findings lead to a model consistent with a critical role for BIM1 in both filament integrity and nuclear congression that is mediated through the microtubule cytoskeleton.


Assuntos
Cryptococcus neoformans/fisiologia , Proteínas Fúngicas/fisiologia , Proteínas dos Microtúbulos/fisiologia , Citoesqueleto/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Humanos , Proteínas dos Microtúbulos/deficiência
9.
Mol Microbiol ; 72(6): 1334-47, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19486297

RESUMO

Homeodomain proteins function in fungi to specify cell types and control sexual development. In the meningoencephalitis-causing fungal pathogen Cryptococcus neoformans, sexual development leads to the production of spores (suspected infectious particles). Sexual development is controlled by the homeodomain transcription factors Sxi1alpha and Sxi2a, but the mechanism by which they act is unknown. To understand how the Sxi proteins regulate development, we characterized their binding properties in vitro, showing that Sxi2a does not require a partner to bind DNA with high affinity. We then utilized a novel approach, Cognate Site Identifier (CSI) arrays, to define a comprehensive DNA-binding profile for Sxi2a, revealing a consensus sequence distinct from those of other fungal homeodomain proteins. Finally, we show that the homeodomains of both Sxi proteins are required for sexual development, a departure from related fungi. Our findings support a model in which Sxi1alpha and Sxi2a control sexual development in a homeodomain-dependent manner by binding to DNA sequences that differ from those defined in previously established fungal paradigms.


Assuntos
Cryptococcus neoformans/genética , Proteínas Fúngicas/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Sequência Consenso , Cryptococcus neoformans/metabolismo , DNA Fúngico/genética , Ensaio de Desvio de Mobilidade Eletroforética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Teste de Complementação Genética , Proteínas de Homeodomínio/genética , Mutagênese Sítio-Dirigida , Análise de Sequência com Séries de Oligonucleotídeos , Ligação Proteica , Especificidade por Substrato , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA