Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 11096, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31366906

RESUMO

In this work, a 200 µm diameter InGaP (GaInP) p+-i-n+ mesa photodiode was studied across the temperature range 100 °C to 20 °C for the development of a temperature-tolerant electron spectrometer. The depletion layer thickness of the InGaP device was 5 µm. The performance of the InGaP detector was analysed under dark conditions and then under the illumination of a 183 MBq 63Ni radioisotope beta particle source. The InGaP photodiode was connected to a custom-made low-noise charge-sensitive preamplifier to realise a particle counting electron spectrometer. Beta spectra were collected at temperatures up to 100 °C with the InGaP device reverse biased at 5 V. The spectrum accumulated at 20 °C was compared with the spectrum predicted using Monte Carlo simulations; good agreement was found between the predicted and experimental spectra. The work is of importance for the development of electron spectrometers that can be used for planetary and space science missions to environments of high temperature or extreme radiation (e.g. Mercury, Jupiter's moon Europa, near-Sun comets), as well as terrestrial applications.

2.
Sci Rep ; 9(1): 12155, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31434964

RESUMO

Two custom-made Al0.52In0.48P p+-i-n+ mesa photodiodes with different diameters (217 µm ± 15 µm and 409 µm ± 28 µm) and i layer thicknesses of 6 µm have been electrically characterised over the temperature range 0 °C to 100 °C. Each photodiode was then investigated as a high-temperature-tolerant photon counting X-ray detector by connecting it to a custom-made low-noise charge-sensitive preamplifier and illuminating it with an 55Fe radioisotope X-ray source (Mn Kα = 5.9 keV; Mn Kß = 6.49 keV). At 100 °C, the best energy resolutions (full width at half maximum at 5.9 keV) achieved using the 217 µm ± 15 µm diameter photodiode and the 409 µm ± 28 µm diameter photodiode were 1.31 keV ± 0.04 keV and 1.64 keV ± 0.08 keV, respectively. Noise analysis of the system is presented. The dielectric dissipation factor of Al0.52In0.48P was estimated as a function of temperature, up to 100 °C. The results show the performance of the thickest Al0.52In0.48P X-ray detectors so far reported at high temperature. The work has relevance for the development of novel space science instrumentation for use in hot space environments and extreme terrestrial applications.

3.
Nat Commun ; 9(1): 862, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491362

RESUMO

Single photons and entangled photon pairs are a key resource of many quantum secure communication and quantum computation protocols, and non-Poissonian sources emitting in the low-loss wavelength region around 1,550 nm are essential for the development of fibre-based quantum network infrastructure. However, reaching this wavelength window has been challenging for semiconductor-based quantum light sources. Here we show that quantum dot devices based on indium phosphide are capable of electrically injected single photon emission in this wavelength region. Using the biexciton cascade mechanism, they also produce entangled photons with a fidelity of 87 ± 4%, sufficient for the application of one-way error correction protocols. The material system further allows for entangled photon generation up to an operating temperature of 93 K. Our quantum photon source can be directly integrated with existing long distance quantum communication and cryptography systems, and provides a promising material platform for developing future quantum network hardware.

4.
J Microsc ; 268(3): 298-304, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28972657

RESUMO

Quantum cascade lasers can be efficient infrared radiation sources and consist of several hundreds of very thin layers arranged in stacks that are repeated periodically. Both the thicknesses of the individual layers as well as the period lengths need to be monitored to high precision. Different transmission electron microscopy methods have been combined to analyse AlGaAs/GaAs quantum cascade laser structures in cross-section. We found a small parabolic variation of the growth rate during deposition, affecting the stack periodicity and a reduced aluminium content of the AlGaAs barriers, whereas their widths as well as those of the GaAs quantum wells agreed with the nominal values within one atomic layer. Growth on an offcut substrate led to facets and steps at the interfaces.

5.
Sci Rep ; 7(1): 10206, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860511

RESUMO

In this paper, for the first time an InGaP (GaInP) photon counting X-ray photodiode has been developed and shown to be suitable for photon counting X-ray spectroscopy when coupled to a low-noise charge-sensitive preamplifier. The characterisation of two randomly selected 200 µm diameter and two randomly selected 400 µm diameter In0.5Ga0.5P p+-i-n+ mesa photodiodes is reported; the i-layer of the p+-i-n+ structure was 5 µm thick. At room temperature, and under illumination from an 55Fe radioisotope X-ray source, X-ray spectra were accumulated; the best spectrometer energy resolution (FWHM) achieved at 5.9 keV was 900 eV for the 200 µm In0.5Ga0.5P diameter devices at reverse biases above 5 V. System noise analysis was also carried out and the different noise contributions were computed.

6.
Sci Rep ; 7(1): 4981, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28694470

RESUMO

This paper investigates the effects of temperature on an InGaP (GaInP) 55Fe X-ray photovoltaic cell prototype for a radioisotope microbattery (also called a nuclear microbattery). An In0.5Ga0.5P p-i-n (5 µm i-layer) mesa photodiode was illuminated by a standard 206 MBq 55Fe radioisotope X-ray source and characterised over the temperature range -20 °C to 100 °C. The electrical power output of the device reached its maximum value of 1.5 pW at a temperature of -20 °C. An open circuit voltage and a short circuit current of 0.82 V and 2.5 pA, respectively, were obtained at -20 °C. While the electrical power output and the open circuit voltage decreased with increasing temperature, an almost flat trend was found for the short circuit current. The cell conversion efficiency decreased from 2.1% at -20 °C to 0.7% at 100 °C.

7.
Nano Lett ; 16(12): 7414-7420, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960503

RESUMO

We investigate the nonlinear mechanical properties of GaAs nanowires with anisotropic cross-section. Fundamental and second order flexural modes are studied using laser interferometry with good agreement found between experiment and theory describing the nonlinear response under mechanical excitation. In particular, we demonstrate that the sign of the nonlinear coupling between orthogonal modes is dependent on the cross-section aspect ratio. The findings are of interest for applications such as amplitude to frequency conversion and vectorial force sensing.

8.
Opt Express ; 24(9): 10020-9, 2016 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-27137612

RESUMO

We report free space visible light communication using InGaN sources, namely micro-LEDs and a laser diode, down-converted by a red-emitting AlInGaP multi-quantum-well nanomembrane. In the case of micro-LEDs, the AlInGaP nanomembrane is capillary-bonded between the sapphire window of a micro-LED array and a hemispherical sapphire lens to provide an integrated optical source. The sapphire lens improves the extraction efficiency of the color-converted light. For the case of the down-converted laser diode, one side of the nanomembrane is bonded to a sapphire lens and the other side optionally onto a dielectric mirror; this nanomembrane-lens structure is remotely excited by the laser diode. Data transmission up to 870 Mb/s using pulse amplitude modulation (PAM) with fractionally spaced decision feedback equalizer is demonstrated for the micro-LED-integrated nanomembrane. A data rate of 1.2 Gb/s is achieved using orthogonal frequency division multiplexing (ODFM) with the laser diode pumped sample.

9.
Nano Lett ; 13(3): 861-5, 2013 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-23398085

RESUMO

The potential for scale-up coupled with minimized system size is likely to be a major determining factor in the realization of applicable quantum information systems. Nanofabrication technology utilizing the III-V semiconductor system provides a path to scalable quantum bit (qubit) integration and a materials platform with combined electronic/photonic functionality. Here, we address the key requirement of qubit-site and emission energy control for scale-up by demonstrating uniform arrays of III-V nanowires, where each nanowire contains a single quantum dot. Optical studies of single nanowire quantum dots reveal narrow linewidth exciton and biexciton emission and clear state-filling at higher powers. Individual nanowire quantum dots are shown to emit nonclassically with clear evidence of photon antibunching. A model is developed to explain unexpectedly large excited state separations as revealed by photoluminescence emission spectra. From measurements of more than 40 nanowire quantum dots, we find emission energies with an ensemble broadening of 15 meV. The combination of deterministic site control and the narrow distribution in ensemble emission energy results in a system readily capable of scaling for multiqubit quantum information applications.

10.
Nat Nanotechnol ; 7(10): 646-50, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22922539

RESUMO

Strained semiconductor nanostructures can be used to make single-photon sources, detectors and photovoltaic devices, and could potentially be used to create quantum logic devices. The development of such applications requires techniques capable of nanoscale structural analysis, but the microscopy methods typically used to analyse these materials are destructive. NMR techniques can provide non-invasive structural analysis, but have been restricted to strain-free semiconductor nanostructures because of the significant strain-induced quadrupole broadening of the NMR spectra. Here, we show that optically detected NMR spectroscopy can be used to analyse individual strained quantum dots. Our approach uses continuous-wave broadband radiofrequency excitation with a specially designed spectral pattern and can probe individual strained nanostructures containing only 1 × 10(5) quadrupole nuclear spins. With this technique, we are able to measure the strain distribution and chemical composition of quantum dots in the volume occupied by the single confined electron. The approach could also be used to address problems in quantum information processing such as the precise control of nuclear spins in the presence of strong quadrupole effects.


Assuntos
Espectroscopia de Ressonância Magnética , Pontos Quânticos
11.
Phys Rev Lett ; 106(2): 027402, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21405250

RESUMO

We measure the hyperfine interaction of the valence band hole with nuclear spins in single InP/GaInP semiconductor quantum dots. Detection of photoluminescence (PL) of both "bright" and "dark" excitons enables direct measurement of the Overhauser shift of states with the same electron but opposite hole spin projections. We find that the hole hyperfine constant is ≈11% of that of the electron and has the opposite sign. By measuring the degree of circular polarization of the PL, an upper limit to the contribution of the heavy-light hole mixing to the measured value of the hole hyperfine constant is deduced. Our results imply that environment-independent hole spins are not realizable in III-V semiconductor, a result important for solid-state quantum information processing using hole spin qubits.

12.
Phys Rev Lett ; 104(6): 066804, 2010 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-20366847

RESUMO

We demonstrate that efficient optical pumping of nuclear spins in semiconductor quantum dots (QDs) can be achieved by resonant pumping of optically forbidden transitions. This process corresponds to one-to-one conversion of a photon absorbed by the dot into a polarized nuclear spin, and also has potential for initialization of hole spin in QDs. We find that by employing this spin-forbidden process, nuclear polarization of 65% can be achieved, markedly higher than from pumping the allowed transition, which saturates due to the low probability of electron-nuclear spin flip-flop.

13.
Opt Express ; 15(22): 14861-9, 2007 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-19550765

RESUMO

We report on quantum cascade lasers employing waveguides based on a predominant air confinement mechanism in which the active region is located immediately at the device top surface. The lasers employ ridge-waveguide resonators with narrow lateral electrical contacts only, with a large, central top region not covered by metallization layers. Devices based on this principle have been reported in the past; however, they employed a thick, doped top-cladding layer in order to allow for uniform current injection. We find that the in-plane conductivity of the active region - when the material used is of high quality - provides adequate electrical injection. As a consequence, the devices demonstrated in this work are thinner, and most importantly they can simultaneously support air-guided and surface-plasmon waveguide modes. When the lateral contacts are narrow, the optical mode is mostly located below the air-semiconductor interface. The mode is predominantly air-guided and it leaks from the top surface into the surrounding environment, suggesting that these lasers could be employed for surface-sensing applications. These laser modes are found to operate up to room temperature under pulsed injection, with an emission spectrum centered around l (1/4) 7:66 mum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...