Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(9)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37175261

RESUMO

Despite extensive research in the field of thrombotic diseases, the prevention of blood clots remains an important area of study. Therefore, the development of new anticoagulant drugs with better therapeutic profiles and fewer side effects to combat thrombus formation is still needed. Herein, we report the synthesis and evaluation of novel pyrroloquinolinedione-based rhodanine derivatives, which were chosen from 24 developed derivatives by docking as potential molecules to inhibit the clotting factors Xa and XIa. For the synthesis of new hybrid derivatives of pyrrolo[3,2,1-ij]quinoline-2-one, we used a convenient structural modification of the tetrahydroquinoline fragment by varying the substituents in positions 2, 4, and 6. In addition, the design of target molecules was achieved by alkylating the amino group of the rhodanine fragment with propargyl bromide or by replacing the rhodanine fragment with 2-thioxoimidazolidin-4-one. The in vitro testing showed that eight derivatives are capable of inhibiting both coagulation factors, two compounds are selective inhibitors of factor Xa, and two compounds are selective inhibitors of factor XIa. Overall, these data indicate the potential anticoagulant activity of these molecules through the inhibition of the coagulation factors Xa and XIa.


Assuntos
Fator XIa , Rodanina , Fator XIa/química , Inibidores do Fator Xa/química , Rodanina/química , Anticoagulantes/farmacologia , Fator Xa
2.
Mol Inform ; 42(2): e2200205, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36328974

RESUMO

Antithrombotic agents based on factor XIIa inhibitors can become a new class of drugs to manage conditions associated with thrombosis. Herein, we report identification of two novel classes of factor XIIa inhibitors. The first one is triazolopyrimidine derivatives designed on the basis of the literature aminotriazole hit and identified using virtual screening of the focused library. The second class is a spirocyclic furo[3,4-c]pyrrole derivatives identified by virtual screening of a large chemical library of drug-like compounds performed in a previous study but confirmed in vitro here. In both cases, the prediction of inhibitory activity is based on the score of the SOL docking program, which uses the MMFF94 force field to calculate the binding energy. For the best ligands selected in virtual screening of the large chemical library, postprocessing with the PM7 semiempirical quantum-chemical method was used to calculate the enthalpy of protein-ligand binding to prioritize 16 compounds for testing in enzymatic assay, and one of them demonstrated micromolar activity. For triazolopyrimidine library, 21 compounds were prioritized for the testing based on docking scores, and visual inspection of docking poses. Of these, 4 compounds showed inhibition of factor XIIa at 30 µM.


Assuntos
Proteínas Sanguíneas , Fator XIIa , Simulação de Acoplamento Molecular , Ligação Proteica
3.
Molecules ; 25(8)2020 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-32325823

RESUMO

Coagulation factor Xa and factor XIa are proven to be convenient and crucial protein targets for treatment for thrombotic disorders and thereby their inhibitors can serve as effective anticoagulant drugs. In the present work, we focused on the structure-activity relationships of derivatives of pyrrolo[3,2,1-ij]quinolin-2(1H)-one and an evaluation of their activity against factor Xa and factor XIa. For this, docking-guided synthesis of nine compounds based on pyrrolo[3,2,1-ij]quinolin-2(1H)-one was carried out. For the synthesis of new hybrid hydropyrrolo[3,2,1-ij]quinolin-2(1H)-one derivatives, we used convenient structural modification of both the tetrahydro- and dihydroquinoline moiety by varying the substituents at the C6,8,9 positions. In vitro testing revealed that four derivatives were able to inhibit both coagulation factors and three compounds were selective factor XIa inhibitors. An IC50 value of 3.68 µM for was found for the best factor Xa inhibitor and 2 µM for the best factor XIa inhibitor.


Assuntos
Fator XIa/química , Inibidores do Fator Xa/química , Fator Xa/química , Pirróis/química , Quinolinas/química , Anticoagulantes , Desenho de Fármacos , Fator XIa/antagonistas & inibidores , Ligação de Hidrogênio , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Pirróis/síntese química , Quinolinas/síntese química , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 175: 201-214, 2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31078867

RESUMO

Herein we report the design, synthesis, molecular docking study and evaluation of antimicrobial activity of ten new dithioloquinolinethiones. The structures of compounds were confirmed by 1H NMR, 13C NMR and HPLC-HRMS. Before evaluation of their possible antimicrobial activity prediction of toxicity was performed. All compounds showed antibacterial activity against eight Gram positive and Gram negative bacterial species. All compounds appeared to be more active than ampicillin and almost all than streptomycin. The best antibacterial activity was observed for compound 8c 4,4,8-trimethyl-5-{[(4-phenyl-5-thioxo-4,5-dihydro-1,3,4-thiadiazol-2-yl)thio]acetyl}-4,5-dihydro-1H-[1,2]dithiolo[3,4c]quino lone-1-thione). The most sensitive bacterium En.cloacae followed by S. aureus, while L.monocytogenes was the most resistant. All compounds were tested for antifungal activity also against eight fungal species. The best activity was expressed by compound 8d (5-[(4,5-Dihydro-1,3-thiazol-2-ylthio)acetyl]-4,4-dimethyl-4,5-dihydro-1H-[1,2]dithiolo[3,4-c]quinoline-1-thione). The most sensitive fungal was T. viride, while P. verrucosum var. cyclopium was the most resistant one. All compounds were more potent as antifungal agent than reference compound bifonazole and ketoconazole. The docking studies indicated a probable involvement of E. coli DNA GyrB inhibition in the anti-bacterial mechanism, while CYP51ca inhibition is probably responsible for antifungal activity of tested compounds. It is interesting to mention that docking results coincides with experimental.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Quinolinas/química , Quinolinas/farmacologia , Antibacterianos/síntese química , Antifúngicos/síntese química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Cromatografia Líquida de Alta Pressão , Desenho de Fármacos , Fungos/classificação , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Espectroscopia de Prótons por Ressonância Magnética , Quinolinas/síntese química , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...