Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36985964

RESUMO

Hybrid nanostructures based on InGaN nanowires with decorated plasmonic silver nanoparticles are investigated in the present study. It is shown that plasmonic nanoparticles induce the redistribution of room temperature photoluminescence between short-wavelength and long-wavelength peaks of InGaN nanowires. It is defined that short-wavelength maxima decreased by 20%, whereas the long-wavelength maxima increased by 19%. We attribute this phenomenon to the energy transfer and enhancement between the coalesced part of the NWs with 10-13% In content and the tips above with an In content of about 20-23%. A proposed Fröhlich resonance model for silver NPs surrounded by a medium with refractive index of 2.45 and spread 0.1 explains the enhancement effect, whereas the decreasing of the short-wavelength peak is associated with the diffusion of charge carriers between the coalesced part of the NWs and the tips above.

2.
Nanomaterials (Basel) ; 12(14)2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35889566

RESUMO

GaN nanowires were grown using selective area plasma-assisted molecular beam epitaxy on SiOx/Si(111) substrates patterned with microsphere lithography. For the first time, the temperature-Ga/N2 flux ratio map was established for selective area epitaxy of GaN nanowires. It is shown that the growth selectivity for GaN nanowires without any parasitic growth on a silica mask can be obtained in a relatively narrow range of substrate temperatures and Ga/N2 flux ratios. A model was developed that explains the selective growth range, which appeared to be highly sensitive to the growth temperature and Ga flux, as well as to the radius and pitch of the patterned pinholes. High crystal quality in the GaN nanowires was confirmed through low-temperature photoluminescence measurements.

3.
Nanotechnology ; 32(33)2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33975293

RESUMO

InGaN nanostructures are among the most promising candidates for visible solid-state lighting and renewable energy sources. To date, there is still a lack of information about the influence of the growth conditions on the physical properties of these nanostructures. Here, we extend the study of InGaN nanowires growth directly on Si substrates by plasma-assisted molecular beam epitaxy. The results of the study showed that under appropriate growth conditions a change in the growth temperature of just 10 °C leads to a significant change in the structural and optical properties of the nanowires. InGaN nanowires with the areas containing 4%-10% of In with increasing tendency towards the top are formed at the growth temperature of 665 °C, while at the growth temperatures range of 655 °C-660 °C the spontaneously core-shell NWs are typically presented. In the latter case, the In contents in the core and the shell are about an order of magnitude different (e.g. 35% and 4% for 655 °C, respectively). The photoluminescence study of the NWs demonstrates a shift in the spectra from blue to orange in accordance with an increase of In content. Based on these results, a novel approach to the monolithic growth of InxGa1-xN NWs with multi-colour light emission on Si substrates by setting a temperature gradient over the substrate surface is proposed.

4.
Materials (Basel) ; 13(10)2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32443456

RESUMO

An InAs/InGaAs quantum dot laser with a heterostructure epitaxially grown on a silicon substrate was used to fabricate injection microdisk lasers of different diameters (15-31 µm). A post-growth process includes photolithography and deep dry etching. No surface protection/passivation is applied. The microlasers are capable of operating heatsink-free in a continuous-wave regime at room and elevated temperatures. A record-low threshold current density of 0.36 kA/cm2 was achieved in 31 µm diameter microdisks operating uncooled. In microlasers with a diameter of 15 µm, the minimum threshold current density was found to be 0.68 kA/cm2. Thermal resistance of microdisk lasers monolithically grown on silicon agrees well with that of microdisks on GaAs substrates. The ageing test performed for microdisk lasers on silicon during 1000 h at a constant current revealed that the output power dropped by only ~9%. A preliminary estimate of the lifetime for quantum-dot (QD) microlasers on silicon (defined by a double drop of the power) is 83,000 h. Quantum dot microdisk lasers made of a heterostructure grown on GaAs were transferred onto a silicon wafer using indium bonding. Microlasers have a joint electrical contact over a residual n+ GaAs substrate, whereas their individual addressing is achieved by placing them down on a p-contact to separate contact pads. These microdisks hybridly integrated to silicon laser at room temperature in a continuous-wave mode. No effect of non-native substrate on device characteristics was found.

5.
Nanoscale Res Lett ; 9(1): 3266, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26264786

RESUMO

Ultrasmall microring and microdisk lasers with an asymmetric air/GaAs/Al0.98Ga0.02As waveguide and an active region based on InAs/InGaAs/GaAs quantum dots emitting around 1.3 µm were fabricated and studied. The diameter D of the microrings and microdisks was either 2 or 1.5 µm, and the inner diameter d of the microrings varied from 20% to 70% of the outer diameter D. The microring with D = 2 µm and d = 0.8 µm demonstrated a threshold pump power as low as 1.8 µW at room temperature. Lasing was observed up to 100°C owing to the use of quantum dots providing high confinement energy both for electrons and holes. Tuning spectral positions of the whispering gallery modes via changing the inner diameters of the microrings was demonstrated. PACS: 78.67.Hc; 42.55.Sa; 42.50.Pq; 78.55.Cr.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...