Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(1): 1089-1099, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38156609

RESUMO

The photogeneration of multiple unpaired electron spins within molecules is a promising route to applications in quantum information science because they can be initialized into well-defined, multilevel quantum states (S > 1/2) and reproducibly fabricated by chemical synthesis. However, coherent manipulation of these spin states is difficult to realize in typical molecular systems due to the lack of selective addressability and short coherence times of the spin transitions. Here, these challenges are addressed by using donor-acceptor single cocrystals composed of pyrene and naphthalene dianhydride to host spatially oriented triplet excitons, which exhibit promising photogenerated qutrit properties. Time-resolved electron paramagnetic resonance (TREPR) spectroscopy demonstrates that spatially orienting triplet excitons in a single crystal platform imparts narrow, well-resolved, tunable resonances in the triplet EPR spectrum, allowing selective addressability of the spin sublevel transitions. Pulse-EPR spectroscopy reveals that at temperatures above 30 K, spin decoherence of these triplet excitons is driven by exciton diffusion. However, coherence is limited by electronic spin dipolar coupling below 30 K, where T2 varies nonlinearly with the optical excitation density due to exciton annihilation. Overall, an optimized coherence time of T2 = 7.1 µs at 20 K is achieved. These results provide important insights into designing solid-state molecular excitonic materials with improved spin qutrit properties.

2.
J Am Chem Soc ; 145(47): 25903-25909, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37963349

RESUMO

An important criterion for quantum operations is long qubit coherence times. To elucidate the influence of molecular structure on the coherence times of molecular spin qubits and qudits, a series of molecules featuring perylenediimide (PDI) chromophores covalently linked to stable nitroxide radicals were synthesized and investigated by pulse electron paramagnetic resonance spectroscopy. Photoexcitation of PDI in these systems creates an excited quartet state (Q) followed by a spin-polarized doublet ground state (D0), which hold promise as spin qudits and qubits, respectively. By tailoring the molecular structure of these spin qudit/qubit candidates by selective deuteration and eliminating intramolecular motion, coherence times of Tm = 9.1 ± 0.3 and 4.2 ± 0.3 µs at 85 K for D0 and Q, respectively, are achieved. These coherence times represent a nearly 3-fold enhancement compared to those of the initial molecular design. This approach offers a rational structural design protocol for effectively extending coherence times in molecular spin qudits/qubits.

3.
Science ; 382(6667): 197-201, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824648

RESUMO

The role of chirality in determining the spin dynamics of photoinduced electron transfer in donor-acceptor molecules remains an open question. Although chirality-induced spin selectivity (CISS) has been demonstrated in molecules bound to substrates, experimental information about whether this process influences spin dynamics in the molecules themselves is lacking. Here we used time-resolved electron paramagnetic resonance spectroscopy to show that CISS strongly influences the spin dynamics of isolated covalent donor-chiral bridge-acceptor (D-Bχ-A) molecules in which selective photoexcitation of D is followed by two rapid, sequential electron-transfer events to yield D•+-Bχ-A•-. Exploiting this phenomenon affords the possibility of using chiral molecular building blocks to control electron spin states in quantum information applications.

4.
J Am Chem Soc ; 145(33): 18402-18413, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37578165

RESUMO

Organic trisradicals featuring threefold symmetry have attracted significant interest because of their unique magnetic properties associated with spin frustration. Herein, we describe the synthesis and characterization of a triangular prism-shaped organic cage for which we have coined the name PrismCage6+ and its trisradical trication─TR3(•+). PrismCage6+ is composed of three 4,4'-bipyridinium dications and two 1,3,5-phenylene units bridged by six methylene groups. In the solid state, PrismCage6+ adopts a highly twisted conformation with close to C3 symmetry as a result of encapsulating one PF6- anion as a guest. PrismCage6+ undergoes stepwise reduction to its mono-, di-, and trisradical cations in MeCN on account of strong electronic communication between its 4,4'-bipyridinium units. TR3(•+), which is obtained by the reduction of PrismCage6+ employing CoCp2, adopts a triangular prism-shaped conformation with close to C2v symmetry in the solid state. Temperature-dependent continuous-wave and nutation-frequency-selective electron paramagnetic resonance spectra of TR3(•+) in frozen N,N-dimethylformamide indicate its doublet ground state. The doublet-quartet energy gap of TR3(•+) is estimated to be -0.08 kcal mol-1, and the critical temperature of spin-state conversion is found to be ca. 50 K, suggesting that it displays pronounced spin frustration at the molecular level. To the best of our knowledge, this example is the first organic radical cage to exhibit spin frustration. The trisradical trication of PrismCage6+ opens up new possibilities for fundamental investigations and potential applications in the fields of both organic cages and spin chemistry.

5.
J Chem Phys ; 158(20)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37254961

RESUMO

Molecular qubits are an emerging platform in quantum information science due to the unmatched structural control that chemical design and synthesis provide compared to other leading qubit technologies. This theoretical study investigates pulse sequence protocols for spin-correlated radical pairs, which are important molecular spin qubit pair (SQP) candidates. Here, we introduce improved microwave pulse protocols for enhancing the execution times of quantum logic gates based on SQPs. Significantly, this study demonstrates that the proposed pulse sequences effectively remove certain contributions from nuclear spin effects on spin dynamics, which are a common source of decoherence. Additionally, we have analyzed the factors that control the fidelity of the SQP spin state, following the application of the controlled-NOT gate. It was found that higher magnetic fields introduce a high frequency oscillation in the fidelity. Thereupon, it is suggested that further research should be geared toward executing quantum gates at lower magnetic field values. In addition, an absolute bound of the fidelity outcome due to decoherence is determined, which clearly identifies the important factors that control gate execution. Finally, examples of the application of these pulse sequences to SQPs are described.

6.
Angew Chem Int Ed Engl ; 62(29): e202305526, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37208812

RESUMO

The interactions between uranium and non-innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium-based metal-organic frameworks (MOFs) offer a new angle to study these interactions, as these self-assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non-innocent linkers. We report the synthesis of the MOF NU-1700, assembled from U4+ -paddlewheel nodes and catecholate-based linkers. We propose this highly unusual structure, which contains two U4+ ions in a paddlewheel built from four linkers-a first among uranium materials-as a result of extensive characterization via powder X-ray diffraction (PXRD), sorption, transmission electron microscopy (TEM), and thermogravimetric analysis (TGA), in addition to density functional theory (DFT) calculations.

7.
J Magn Reson ; 349: 107410, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36870248

RESUMO

The EPR spectra of paramagnetic species induced by photoexcitation typically exhibit enhanced absorptive and emissive features resulting from sublevel populations that differ from thermal equilibrium. The populations and the resulting spin polarization of the spectra are dictated by the selectivity of the photophysical process generating the observed state. Simulation of the spin-polarized EPR spectra is crucial in the characterization of both the dynamics of formation of the photoexcited state as well as its electronic and structural properties. EasySpin, the simulation toolbox for EPR spectroscopy, now includes extended support for the simulation of the EPR spectra of spin-polarized states of arbitrary spin multiplicity and formed by a variety of different mechanisms, including photoexcited triplet states populated by intersystem crossing, charge recombination or spin polarization transfer, spin-correlated radical pairs created by photoinduced electron transfer, triplet pairs formed by singlet fission and multiplet states arising from photoexcitation in systems containing chromophores and stable radicals. In this paper, we highlight EasySpin's capabilities for the simulation of spin-polarized EPR spectra on the basis of illustrative examples from the literature in a variety of fields ranging across chemistry, biology, material science and quantum information science.

8.
J Am Chem Soc ; 145(11): 6585-6593, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36913602

RESUMO

Sub-nanosecond photodriven electron transfer from a molecular donor to an acceptor can be used to generate a radical pair (RP) having two entangled electron spins in a well-defined pure initial singlet quantum state to serve as a spin-qubit pair (SQP). Achieving good spin-qubit addressability is challenging because many organic radical ions have large hyperfine couplings (HFCs) in addition to significant g-anisotropy, which results in significant spectral overlap. Moreover, using radicals with g-factors that deviate significantly from that of the free electron results in difficulty generating microwave pulses with sufficiently large bandwidths to manipulate the two spins either simultaneously or selectively as is necessary to implement the controlled-NOT (CNOT) quantum gate essential for quantum algorithms. Here, we address these issues by using a covalently linked donor-acceptor(1)-acceptor(2) (D-A1-A2) molecule with significantly reduced HFCs that uses fully deuterated peri-xanthenoxanthene (PXX) as D, naphthalenemonoimide (NMI) as A1, and a C60 derivative as A2. Selective photoexcitation of PXX within PXX-d9-NMI-C60 results in sub-nanosecond, two-step electron transfer to generate the long-lived PXX•+-d9-NMI-C60•- SQP. Alignment of PXX•+-d9-NMI-C60•- in the nematic liquid crystal 4-cyano-4'-(n-pentyl)biphenyl (5CB) at cryogenic temperatures results in well-resolved, narrow resonances for each electron spin. We demonstrate both single-qubit gate and two-qubit CNOT gate operations using both selective and nonselective Gaussian-shaped microwave pulses and broadband spectral detection of the spin states following the gate operations.

9.
Nat Commun ; 14(1): 848, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36792597

RESUMO

Electron spins in solid-state systems offer the promise of spin-based information processing devices. Single-walled carbon nanotubes (SWCNTs), an all-carbon one-dimensional material whose spin-free environment and weak spin-orbit coupling promise long spin coherence times, offer a diverse degree of freedom for extended range of functionality not available to bulk systems. A key requirement limiting spin qubit implementation in SWCNTs is disciplined confinement of isolated spins. Here, we report the creation of highly confined electron spins in SWCNTs via a bottom-up approach. The record long coherence time of 8.2 µs and spin-lattice relaxation time of 13 ms of these electronic spin qubits allow demonstration of quantum control operation manifested as Rabi oscillation. Investigation of the decoherence mechanism reveals an intrinsic coherence time of tens of milliseconds. These findings evident that combining molecular approaches with inorganic crystalline systems provides a powerful route for reproducible and scalable quantum materials suitable for qubit applications.

10.
Angew Chem Int Ed Engl ; 62(6): e202214668, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469535

RESUMO

Photoexcited organic chromophores appended to stable radicals can serve as qubit and/or qudit candidates for quantum information applications. 1,6,7,12-Tetra-(4-tert-butylphenoxy)-perylene-3,4 : 9,10-bis(dicarboximide) (tpPDI) linked to a partially deuterated α,γ-bisdiphenylene-ß-phenylallyl radical (BDPA-d16 ) was synthesized and characterized by time-resolved optical and electron paramagnetic resonance (EPR) spectroscopies. Photoexcitation of tpPDI-BDPA-d16 results in ultrafast radical-enhanced intersystem crossing to produce a quartet state (Q) followed by formation of a spin-polarized doublet ground state (D0 ). Pulse-EPR experiments confirmed the spin multiplicity of Q and yielded coherence times of Tm =2.1±0.1 µs and 2.8±0.2 µs for Q and D0 , respectively. BDPA-d16 eliminates the dominant 1 H hyperfine couplings, resulting in a single narrow line for both the Q and D0 states, which enhances the spectral resolution needed for good qubit addressability.

11.
J Phys Chem B ; 126(49): 10519-10527, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36459223

RESUMO

The ability to initialize an electron spin qubit into a well-defined state is an important criterion for quantum information applications. To achieve this goal, a chromophore photoexcited to its triplet state is used to strongly spin polarize a nearby stable radical in a series of C60 fullerene derivatives containing a covalently linked α,γ-bisdiphenylene-ß-phenylallyl (BDPA) radical. Selective photoexcitation of C60 results in up to 20-fold enhancement of the BDPA spin polarization observed by pulse electron paramagnetic resonance spectroscopy at room temperature. The sign of the spin polarization depends on the nature of the molecular spacer between C60 and BDPA. In addition, transient absorption spectroscopy and pulse-EPR measurements reveal that the BDPA spin polarization is derived from spin polarization transfer from the C60 triplet state by weak exchange coupling over a 1 nm distance.

12.
J Am Chem Soc ; 144(27): 12092-12101, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35786950

RESUMO

Ceria-based materials have been highly desired in photocatalytic reactions due to their redox properties and strong oxygen storage and transfer ability. Herein, we report the structures of one CeCe70 oxysulfate cluster and four MCe70 clusters (M = Cu, Ni, Co, and Fe) with the same Ce70 core. As noted, single-crystal X-ray diffraction confirmed the structures of CeCe70 and the MCe70 series, while Raman spectroscopy indicated an increase in oxygen defects upon the introduction of Cu and Fe ions. The clusters catalyzed the oxidation of 4-methoxybenzyl alcohol under ultraviolet light. CuCe70 and FeCe70 exhibited enhanced reactivity compared to CeCe70 and improved aldehyde selectivity compared to control experiments. In comparison with their homogeneous congeners, the CeCe70/MCe70 clusters altered the location of radical generation from the bulk solution to the clusters' surfaces. Mechanistic studies highlight the role of oxygen defects and specific transition metal introduction for efficient photocatalysis. The mechanistic pathway in this study provides insight into how to select or design a highly selective catalyst for photocatalysis.

13.
J Am Chem Soc ; 144(5): 2276-2283, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099963

RESUMO

Multiexciton quintet states, 5(TT), photogenerated in organic semiconductors using singlet fission (SF), consist of four quantum entangled spins, promising to enable new applications in quantum information science. However, the factors that determine the spin coherence of these states remain underexplored. Here, we engineer the packing of tetracene molecules within single crystals of 5,12-bis(tricyclohexylsilylethynyl)tetracene (TCHS-tetracene) to demonstrate a 5(TT) state that exhibits promising spin qubit properties, including a coherence time, T2, = 3 µs at 10 K, a population lifetime, Tpop, = 130 µs at 5 K, and stability even at room temperature. The single-crystal platform also enables global alignment of the spins and, consequently, individual addressability of the spin-sublevel transitions. Decoherence mechanisms, including exciton diffusion, electronic dipolar coupling, and nuclear hyperfine interactions, are elucidated, providing design principles for increasing T2 and the operational temperature of 5(TT). By dynamically decoupling 5(TT) from the surrounding spin bath, T2 = 10 µs is achieved. These results demonstrate the viability of harnessing singlet fission to initiate multiple electron spins in a well-defined quantum state for next-generation molecular-based quantum technologies.

14.
J Phys Chem Lett ; 13(1): 156-160, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-34962822

RESUMO

We recently demonstrated photodriven quantum teleportation of an electron spin state in a covalent donor-acceptor-radical (D-A-R•) system. Following specific spin state preparation on R• with a microwave pulse, photoexcitation of A results in two-step electron transfer producing D•+-A-R-, where the spin state on R• is teleported to D•+. This study examines the effects of varying the time (τD) between spin state preparation and photoinitiated teleportation. Using pulse electron paramagnetic resonance spectroscopy, the spin echo of D•+ resulting from teleportation shows a damped oscillation as a function of τD that is simulated using a density matrix model, which provides a fundamental understanding of the echo behavior. Teleportation fidelity calculations also show oscillatory behavior as a function of τD due to the accumulation of a phase factor between ⟨Sx⟩ and ⟨Sy⟩. Understanding experimental parameters intrinsic to quantum teleportation in molecular systems is crucial to leveraging this phenomenon for quantum information applications.

15.
ACS Nano ; 15(12): 20550-20561, 2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34882393

RESUMO

Halide perovskites doped with magnetic impurities (such as the transition metals Mn2+, Co2+, Ni2+) are being explored for a wide range of applications beyond photovoltaics, such as spintronic devices, stable light-emitting diodes, single-photon emitters, and magneto-optical devices. However, despite several recent studies, there is no consensus on whether the doped magnetic ions will predominantly replace the octahedral B-site metal via substitution or reside at interstitial defect sites. Here, by performing correlated nanoscale X-ray microscopy, spatially and temporally resolved photoluminescence measurements, and magnetic force microscopy on the inorganic 2D perovskite Cs2PbI2Cl2, we show that doping Mn2+ into the structure results in a lattice expansion. The observed lattice expansion contrasts with the predicted contraction expected to arise from the B-site metal substitution, thus implying that Mn2+ does not replace the Pb2+ sites. Photoluminescence and electron paramagnetic resonance measurements confirm the presence of Mn2+ in the lattice, while correlated nano-XRD and X-ray fluorescence track the local strain and chemical composition. Density functional theory calculations predict that Mn2+ atoms reside at the interstitial sites between two octahedra in the triangle formed by one Cl- and two I- atoms, which results in a locally expanded structure. These measurements show the fate of the transition metal dopants, the local structure, and optical emission when they are doped at dilute concentrations into a wide band gap semiconductor.

16.
J Am Chem Soc ; 143(21): 8069-8077, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34014650

RESUMO

The combination of structural precision and reproducibility of synthetic chemistry is perfectly suited for the creation of chemical qubits, the core units of a quantum information science (QIS) system. By exploiting the atomistic control inherent to synthetic chemistry, we address a fundamental question of how the spin-spin distance between two qubits impacts electronic spin coherence. To achieve this goal, we designed a series of molecules featuring two spectrally distinct qubits, an early transition metal, Ti3+, and a late transition metal, Cu2+ with increasing separation between the two metals. Crucially, we also synthesized the monometallic congeners to serve as controls. The spectral separation between the two metals enables us to probe each metal individually in the bimetallic species and compare it with the monometallic control samples. Across a range of 1.2-2.5 nm, we find that electron spins have a negligible effect on coherence times, a finding we attribute to the distinct resonance frequencies. Coherence times are governed, instead, by the distance to nuclear spins on the other qubit's ligand framework. This finding offers guidance for the design of spectrally addressable molecular qubits.

17.
J Am Chem Soc ; 143(12): 4625-4632, 2021 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-33735563

RESUMO

The designing of tunable molecular systems that can host spin qubits is a promising strategy for advancing the development of quantum information science (QIS) applications. Photogenerated radical pairs are good spin qubit pair (SQP) candidates because they can be initialized in a pure quantum state that exhibits relatively long coherence times. DNA is a well-studied molecular system that allows for control of energetics and spatial specificity through careful design and thus serves as a tunable scaffold on which to control multispin interactions. Here, we examine a series of DNA hairpins that use naphthalenediimide (NDI) as the hairpin linker. Photoexcitation of the NDI leads to subnanosecond oxidation of guanine (G) within the duplex or a stilbenediether (Sd) end-cap to give NDI•--G•+ or NDI•--Sd•+ SQPs, respectively. A 2,2,6,6-tetramethylpiperdinyl-1-oxyl (TEMPO) stable radical is covalently attached to the hairpin at varying distances from the SQP spins. While TEMPO has a minimal effect on the SQP formation and decay dynamics, EPR spectroscopy indicates that there are significant spin-spin dipolar interactions between the SQP and TEMPO. We also demonstrate the ability to implement more complex spin manipulations of the NDI•--Sd•+-TEMPO system using pulse-EPR techniques, which is important for developing DNA hairpins for QIS applications.


Assuntos
DNA/química , Elétrons , Imidas/química , Naftalenos/química , Teoria Quântica , Estrutura Molecular , Processos Fotoquímicos
18.
J Phys Chem Lett ; 12(9): 2213-2218, 2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33630591

RESUMO

Photogenerated entangled electron spin pairs provide a versatile source of molecular qubits. Here, we examine the spin-dependent dynamics of a covalent donor-acceptor-radical molecule, D-A-R•, where the donor chromophore (D) is peri-xanthenoxanthene (PXX), the acceptor (A) is pyromellitimide (PI), and the radical (R•) is α,γ-bisdiphenylene-ß-phenylallyl (BDPA). Selective photoexcitation of D within D-A-R• in butyronitrile/propionitrile at 140 K and butyronitrile at 105 K results in the spin-selective reactions D-A-R• → D•+-1(A•--R•) and D•+-3(A•--R•). Subsequently, at 140 K, D•+-1(A•--R•) → D•+-A-R-, whereas D•+-3(A•--R•) → D-A-R•. In contrast, at 105 K, D•+-3(A•--R•) → 3*D-A-R• and D-A-R•. Time-resolved EPR spectroscopy shows that 3*D-A-R• is highly spin-polarized, where the ms = ±1/2 spin sublevels of the doublet-quartet manifolds are selectively populated. These results demonstrate dielectric environment control over different spin states in the same molecule.

19.
J Phys Chem A ; 125(3): 825-834, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33449684

RESUMO

Quantum coherence effects on charge transfer and spin dynamics in a system having two degenerate electron acceptors are studied using a zinc 5,10,15-tri(n-pentyl)-20-phenylporphyrin (ZnP) electron donor covalently linked to either one or two naphthalene-1,8:4,5-bis(dicarboximide) (NDI) electron acceptors using an anthracene (An) spacer, ZnP-An-NDI (1) and ZnP-An-NDI2 (2), respectively. Following photoexcitation of 1 and 2 in toluene at 295 K, femtosecond transient absorption spectroscopy shows that the electron transfer (ET) rate constant for 2 is about three times larger than that of 1, which can be accounted for by the statistical nature of incoherent ET as well as the electron couplings for the charge separation reactions. In contrast, the rate constant for charge recombination (CR) of 1 is about 25% faster than that of 2. Using femtosecond transient infrared spectroscopy and theoretical analysis, we find that the electron on NDI2•- in 2 localizes onto one of the two NDIs prior to CR, thus precluding electronically coherent CR from NDI2•-. Conversely, CR in both 1 and 2 is spin coherent as indicated by the observation of a resonance in the 3*ZnP yield following CR as a function of applied magnetic field, giving spin-spin exchange interaction energies of 2J = 210 and 236 mT, respectively, where the line width of the resonance for 2 is greater than 1. These data show that while CR is a spin-coherent process, incoherent hopping of the electron between the two NDIs in 2, consistent with the lack of delocalization noted above, results in greater spin decoherence in 2 relative to 1.

20.
J Am Chem Soc ; 143(1): 163-175, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33347315

RESUMO

The solid-state properties of organic radicals depend on radical-radical interactions that are influenced by the superstructure of the crystalline phase. Here, we report the synthesis and characterization of a substituted tetracationic cyclophane, cyclobis(paraquat-p-1,4-dimethoxyphenylene), which associates in its bisradical dicationic redox state with the methyl viologen radical cation (MV•+) to give a 1:1 inclusion complex. The (super)structures of the reduced cyclophane and this 1:1 complex in the solid state deviate from the analogous (super)structures observed for the reduced state of cyclobis(paraquat-p-phenylene) and that of its trisradical tricationic complex. Titration experiments reveal that the methoxy substituents on the p-phenylene linkers do not influence binding of the cyclophane toward small neutral guests-such as dimethoxybenzene and tetrathiafulvalene-whereas binding of larger radical cationic guests such as MV•+ by the reduced cyclophane decreases 10-fold. X-ray diffraction analysis reveals that the solid-state superstructure of the 1:1 complex constitutes a discrete entity with weak intermolecular orbital overlap between neighboring complexes. Transient nutation EPR experiments and DFT calculations confirm that the complex has a doublet spin configuration in the ground state as a result of the strong orbital overlap, while the quartet-state spin configuration is higher in energy and inaccessible at ambient temperature. Superconducting quantum interference device (SQUID) measurements reveal that the trisradical tricationic complexes interact antiferromagnetically and form a one-dimensional Heisenberg antiferromagnetic chain along the a-axis of the crystal. These results offer insights into the design and synthesis of organic magnetic materials based on host-guest complexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...