Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 18(12): 2186-2196, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29030481

RESUMO

Plants have developed multiple strategies to sense the external environment and to adapt growth accordingly. Delay of germination 1 (DOG1) is a major quantitative trait locus (QTL) for seed dormancy strength in Arabidopsis thaliana that is reported to be expressed exclusively in seeds. DOG1 is extensively regulated, with an antisense transcript (asDOG1) suppressing its expression in seeds. Here, we show that asDOG1 shows high levels in mature plants where it suppresses DOG1 expression under standard growth conditions. Suppression is released by shutting down antisense transcription, which is induced by the plant hormone abscisic acid (ABA) and drought. Loss of asDOG1 results in constitutive high-level DOG1 expression, conferring increased drought tolerance, while inactivation of DOG1 causes enhanced drought sensitivity. The unexpected role of DOG1 in environmental adaptation of mature plants is separate from its function in seed dormancy regulation. The requirement of asDOG1 to respond to ABA and drought demonstrates that antisense transcription is important for sensing and responding to environmental changes in plants.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Secas , Dormência de Plantas/genética , RNA Antissenso/genética , Sementes/genética , Arabidopsis/anatomia & histologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Mutação , Dormência de Plantas/fisiologia , Plantas Geneticamente Modificadas , Sementes/fisiologia , Fatores de Transcrição
2.
RNA Biol ; 14(7): 838-842, 2017 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-28513325

RESUMO

Transcription terminators are DNA elements located at the 3' end of genes that ensure efficient cleavage of nascent RNA generating the 3' end of mRNA, as well as facilitating disengagement of elongating DNA-dependent RNA polymerase II. Surprisingly, terminators are also a potent source of antisense transcription. We have recently described an Arabidopsis antisense transcript originating from the 3' end of a master regulator of Arabidopsis thaliana seed dormancy DOG1. In this review, we discuss the broader implications of our discovery in light of recent developments in yeast and Arabidopsis. We show that, surprisingly, the key features of terminators that give rise to antisense transcription are preserved between Arabidopsis and yeast, suggesting a conserved mechanism. We also compare our discovery to known antisense-based regulatory mechanisms, highlighting the link between antisense-based gene expression regulation and major developmental transitions in plants.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , RNA Antissenso/metabolismo , Transcrição Gênica , Regiões Promotoras Genéticas/genética , Terminação da Transcrição Genética
3.
Nucleic Acids Res ; 45(6): 3116-3129, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-27994035

RESUMO

ATP-dependent chromatin remodeling complexes are important regulators of gene expression in Eukaryotes. In plants, SWI/SNF-type complexes have been shown critical for transcriptional control of key developmental processes, growth and stress responses. To gain insight into mechanisms underlying these roles, we performed whole genome mapping of the SWI/SNF catalytic subunit BRM in Arabidopsis thaliana, combined with transcript profiling experiments. Our data show that BRM occupies thousands of sites in Arabidopsis genome, most of which located within or close to genes. Among identified direct BRM transcriptional targets almost equal numbers were up- and downregulated upon BRM depletion, suggesting that BRM can act as both activator and repressor of gene expression. Interestingly, in addition to genes showing canonical pattern of BRM enrichment near transcription start site, many other genes showed a transcription termination site-centred BRM occupancy profile. We found that BRM-bound 3΄ gene regions have promoter-like features, including presence of TATA boxes and high H3K4me3 levels, and possess high antisense transcriptional activity which is subjected to both activation and repression by SWI/SNF complex. Our data suggest that binding to gene terminators and controlling transcription of non-coding RNAs is another way through which SWI/SNF complex regulates expression of its targets.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Regiões Promotoras Genéticas , Regiões Terminadoras Genéticas , Região 3'-Flanqueadora , Arabidopsis/metabolismo , Sítios de Ligação , RNA Antissenso/biossíntese , RNA Mensageiro/biossíntese , Transcrição Gênica
4.
Proc Natl Acad Sci U S A ; 113(48): E7846-E7855, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27856735

RESUMO

Seed dormancy is one of the most crucial process transitions in a plant's life cycle. Its timing is tightly controlled by the expression level of the Delay of Germination 1 gene (DOG1). DOG1 is the major quantitative trait locus for seed dormancy in Arabidopsis and has been shown to control dormancy in many other plant species. This is reflected by the evolutionary conservation of the functional short alternatively polyadenylated form of the DOG1 mRNA. Notably, the 3' region of DOG1, including the last exon that is not included in this transcript isoform, shows a high level of conservation at the DNA level, but the encoded polypeptide is poorly conserved. Here, we demonstrate that this region of DOG1 contains a promoter for the transcription of a noncoding antisense RNA, asDOG1, that is 5' capped, polyadenylated, and relatively stable. This promoter is autonomous and asDOG1 has an expression profile that is different from known DOG1 transcripts. Using several approaches we show that asDOG1 strongly suppresses DOG1 expression during seed maturation in cis, but is unable to do so in trans Therefore, the negative regulation of seed dormancy by asDOG1 in cis results in allele-specific suppression of DOG1 expression and promotes germination. Given the evolutionary conservation of the asDOG1 promoter, we propose that this cis-constrained noncoding RNA-mediated mechanism limiting the duration of seed dormancy functions across the Brassicaceae.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , RNA Antissenso/fisiologia , Sementes/fisiologia , Sequência de Bases , Sequência Conservada , Éxons , Dormência de Plantas , Regiões Promotoras Genéticas , RNA de Plantas/fisiologia , RNA não Traduzido/fisiologia , Transcrição Gênica
5.
Plant Physiol ; 170(2): 947-55, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26620523

RESUMO

DOG1 (Delay of Germination 1) is a key regulator of seed dormancy in Arabidopsis (Arabidopsis thaliana) and other plants. Interestingly, the C terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis, DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3' processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutant. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterizes a set of mutants in RNA 3' processing complex required for production of proximally polyadenylated functional DOG1 transcript.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/fisiologia , Dormência de Plantas/genética , Poliadenilação/genética , Sementes/fisiologia , Sequência de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Germinação , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sementes/genética
6.
Infect Genet Evol ; 12(8): 1911-6, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22986003

RESUMO

It was observed that pressure of host immune system leads to diversifying selection (which can be measured in terms of pN/pS ratio). In this research we checked whether Plasmodium falciparum proteins containing experimentally evident epitopes from the IEDB database are subject to diversifying selection. We also investigated which life stage of this parasite and which proteins are subject to the strongest immune pressure. To answer these questions we used information about experimentally evident epitopes from P. falciparum, that interact with human immune system and sequences of different isolates of P. falciparum obtained from PlasmoDB. We confirmed the expectations that proteins containing IEDB epitopes are subject to stronger diversifying selection which is evidenced by higher pN/pS ratio. A stage characterized by the highest average pN/pS ratio is that of the sporozoite. The greatest fraction of putative antigens is also present at this stage. We also found that the sporozoite stage is particularly interesting for further analysis as it potentially contains the highest number of unidentified epitopes.


Assuntos
Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Animais , Bases de Dados Factuais , Epitopos/genética , Epitopos/imunologia , Interações Hospedeiro-Parasita , Humanos , Fenômenos Imunogenéticos , Estágios do Ciclo de Vida , Malária Falciparum/imunologia , Modelos Moleculares , Polimorfismo de Nucleotídeo Único/genética , Proteoma/análise , Proteoma/genética , Proteoma/imunologia , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...