Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 483: 116832, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266872

RESUMO

Iron deficiency anemia is caused by many pathological conditions like chronic kidney disease (CKD), inflammation, malnutrition and gastrointestinal abnormality. Current treatments that are erythropoiesis stimulating agents (ESAs) and iron supplementation are inadequate and often lead to tolerance and/or toxicity. Desidustat, a prolyl hydroxylase (PHD) inhibitor, is clinically used for the treatment of anemia with CKD. In this study, we investigated the effect of desidustat on iron deficiency anemia (IDA). IDA was induced in C57BL6/J mice by iron deficient diet feeding. These mice were then treated with desidustat (15 mg/kg, PO) and FeSO4 (20 mg/kg) for five weeks and effect of the treatment on hematology, iron homeostasis, and bone marrow histology was observed. Effect of desidustat on iron metabolism in inflammation (LPS)-induced iron deficiency was also assessed. Both, Desidustat and FeSO4, increased MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), hemoglobin, and HCT (hematocrit) in blood and increased iron in serum, liver, and spleen. Desidustat increased MCHC (mean corpuscular hemoglobin concentration) while FeSO4 treatment did not alter it. FeSO4 treatment significantly increased iron deposition in liver, and spleen, while desidustat increased iron in circulation and demonstrated efficient iron utilization. Desidustat increased iron absorption, serum iron and decreased hepcidin without altering tissue iron, while FeSO4 increased serum and tissue iron by increasing hepcidin in LPS-induced iron deficiency. Desidustat increased erythroid population, especially iron-dependent polychromatic normoblasts and orthochromatic normoblasts, while FeSO4 did not improve cell architecture. PHD inhibition by desidustat improved iron utilization in iron deficiency anemia, by efficient erythropoiesis.


Assuntos
Anemia Ferropriva , Inibidores de Prolil-Hidrolase , Quinolonas , Insuficiência Renal Crônica , Camundongos , Animais , Anemia Ferropriva/tratamento farmacológico , Hepcidinas/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Lipopolissacarídeos , Ferro/metabolismo , Inflamação/metabolismo , Hemoglobinas/análise
2.
Artigo em Inglês | MEDLINE | ID: mdl-35570856

RESUMO

Many anemic chronic kidney disease (CKD) patients are refractory to erythropoietin (EPO) effects due to inflammation, deranged iron utilization, and generation of EPO antibodies. This work assessed the effect of desidustat, an inhibitor of hypoxia inducible factor (HIF) prolyl hydroxylase (PHD), on EPO-refractory renal anemia. Sprague Dawley rats were made anemic by cisplatin (5 â€‹mg/kg, IP, single dose) and turpentine oil (5 â€‹mL/kg, SC, once a week). These rats were given recombinant human EPO (rhEPO, 1 â€‹µg/kg) and desidustat (15 or 30 â€‹mg/kg) for eight weeks. Separately, rhEPO (1-5 â€‹µg/kg) was given to anemic rats to sustain the normal hemoglobin levels and desidustat (15 â€‹mg/kg) for eight weeks. In another experiment, the anemic rats were treated rhEPO (5 â€‹µg/kg) for two weeks and then desidustat (15 â€‹mg/kg) for the next two weeks. Dosing of rhEPO was thrice a week, and for desidustat, it was on alternate days. Desidustat inhibited EPO-resistance caused by rhEPO treatment, decreased hepcidin, IL-6, IL-1ß, and increased iron and liver ferroportin. Desidustat reduced EPO requirement and anti-EPO antibodies. Desidustat also maintained normal hemoglobin levels after cessation of rhEPO treatment. Thus, novel prolyl hydroxylase inhibitor desidustat can treat EPO resistance via improved iron utilization and decreased inflammation.

3.
Basic Clin Pharmacol Toxicol ; 130(1): 35-43, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34634192

RESUMO

Inhibiting the intestinal and renal neutral amino acid transporter B0AT1 by genetic means has improved insulin sensitivity in mice, but there are no antagonists available for preclinical or clinical use. Since the anti-inflammatory agent nimesulide selectively inhibited B0AT1 in vitro, we hypothesized that nimesulide exhibits in vivo potential to restrict neutral amino acid absorption and, therefore, may improve insulin sensitivity. The dose-related effect of nimesulide (10 to 100 mg/kg, PO) on intestinal absorption of neutral amino acids was estimated in C57 mice. The effect of nimesulide (50 mg/kg, PO) on renal resorption of amino acids was also assessed. The effect of chronic nimesulide (50 mg/kg, PO, BID for 14 days) was assessed in high protein diet-fed C57 mice, diet-induced obese mice and obese and diabetic db/db mice. Acute and chronic nimesulide treatment decreased absorption of neutral amino acids and increased their urinary excretion. Nimesulide treatment improved insulin sensitivity and glycemic control, increased GLP-1, decreased liver lipids and improved FGF-21 in serum. Nimesulide improved insulin sensitivity and glucose tolerance by inhibiting neutral amino acid transport in the intestine and kidneys. Thus, it can serve as a tool compound for in vivo B0AT1 inhibition.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Aminoácidos/metabolismo , Hipoglicemiantes/farmacologia , Sulfonamidas/farmacologia , Animais , Transporte Biológico/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fatores de Crescimento de Fibroblastos/sangue , Hipoglicemiantes/administração & dosagem , Resistência à Insulina , Absorção Intestinal/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sulfonamidas/administração & dosagem
4.
Toxicol Appl Pharmacol ; 434: 115825, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34902352

RESUMO

Dyslipidemia or its severe version like familial hypercholesterolemia causes a high risk for cardiovascular diseases. Lomitapide, a microsomal triglyceride transfer protein inhibitor, is approved to treat familial hypercholesterolemia, associated with liver fat accumulation. In this work, we investigated the effect of the combination of lomitapide and triiodothyronine (T3) in Zucker fatty rats. Lomitapide (1 mg/kg, PO), or T3 (13 µg/kg, PO), or their combination, were given to these rats once daily for fourteen days. Body weight and food intake were recorded once daily during the treatment period. Serum and hepatic lipids, glucose tolerance, serum aminotransferases, bile fluids, hepatic gene expression, and liver histology were assessed at the end of the treatment. Lomitapide treatment reduced body weight, food intake, glucose intolerance, and serum lipids, and elevated serum aminotransferases and liver lipids. When combined with T3, lomitapide showed an enhanced reduction in body weight, food intake, serum cholesterol, serum LDL, and glucose intolerance. The combination treatment increased bile flow rate and biliary cholesterol excretion rate. Combining T3 with lomitapide attenuated the elevation of serum aminotransferases and liver lipids. Hepatic ABCB11, ABCG5, ABCG8, CYP7A1, CPT1, and ACOX1 expressions were increased with combination treatment. Histological analysis indicated that T3 attenuated hepatic fat accumulation caused by lomitapide. These data suggests that combining lomitapide with T3 may reduce lomitapide-induced hepatic toxicity and provide additional benefits in obesity and glucose intolerance.


Assuntos
Benzimidazóis/toxicidade , Ácidos e Sais Biliares/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Tri-Iodotironina/farmacologia , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Ratos , Ratos Zucker
5.
Bioorg Med Chem Lett ; 53: 128421, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34718128

RESUMO

Amino acid restriction by inhibition of neutral amino acid transporter, B0AT1 (SLC6A19) activity has been recently shown to improve glyceamic control by upregulating glucagon like peptide (GLP1) and fibroblast growth factor (FGF21) in mice. Hence, pharmacological inhibition of B0AT1 is expected to treat type-2 diabetes and related disorder. In this study, rationally designed trifluoromethyl sulfonyl derivatives were identified as novel, potent and orally bioavailable B0AT1 inhibitors. Compound 39 was found to be nanomolar potent (IC50: 0.035 µM) B0AT1 inhibitor with excellent pharmacokinetic profile (%F: 66) in mice and efficacious in vivo in diet induced obese (DIO) mice model.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/antagonistas & inibidores , Anti-Inflamatórios não Esteroides/farmacologia , Descoberta de Drogas , Sulfonamidas/farmacologia , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas/química
6.
Drug Res (Stuttg) ; 71(9): 528-534, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34311475

RESUMO

BACKGROUND: Hepcidin, a liver-derived peptide, regulates the absorption, distribution, and circulation of iron in the body. Inflammation or iron overload stimulates hepcidin release, which causes the accumulation of iron in tissues. The inadequate levels of iron in circulation impair erythropoiesis. Inhibition of hepcidin may increase iron in circulation and improve efficient erythropoiesis. Activin-like kinase (ALK) inhibitors decrease hepcidin. METHODS: In this work, we have investigated an ALK inhibitor LDN193189 for its efficacy in iron homeostasis. The effect of LDN193189 treatment was assessed in C57BL6/J mice, in which hepcidin was induced by either ferrous sulfate or lipopolysaccharide (LPS) injection. RESULTS: After two hours of treatment, ferrous sulfate increased serum and liver iron, serum hepcidin, and liver hepcidin expression. On the other hand, LPS reduced serum iron in a dose-related manner after six hours of treatment. LDN193189 treatment increased serum iron, decreased spleen and liver iron, decreased serum hepcidin and liver hepcidin expression in ferrous sulfate-treated mice, and increased serum iron in LPS-induced hypoferremia. We observed that ferrous sulfate caused a significantly higher increase in liver iron, serum hepcidin, and liver hepcidin than turpentine oil or LPS in mice. Iron dextran (intraperitoneal or intravenous) increased serum iron, but LDN193189 did not show hyperferremia with iron dextran stimulus. CONCLUSION: Ferrous sulfate-induced hyperferremia can be a valuable and rapid screening model for assessing the efficacy of hepcidin inhibitors.


Assuntos
Hepcidinas , Lipopolissacarídeos , Animais , Compostos Ferrosos , Homeostase , Ferro , Camundongos , Camundongos Endogâmicos C57BL
7.
Eur J Pharmacol ; 899: 174032, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33753107

RESUMO

Diabetic retinopathy is a serious complication of diabetes, marked by retinal vascular damage, inflammation, and angiogenesis. This study's objective was to assess the potential benefits of saroglitazar, a peroxisome proliferator-activated receptor-alpha/gamma (PPAR-α/γ) agonist in diabetic retinopathy. Diabetic retinopathy was induced by streptozotocin in Sprague Dawley rats. The effect of saroglitazar was also assessed in the oxygen-induced retinopathy model in newborn rats and VEGF-induced angiogenesis in the chick chorioallantoic membrane (CAM) assay. Treatment of saroglitazar (1 and 4 mg/kg, oral) for 12 weeks significantly ameliorated retinal vascular leakage and leukostasis in the diabetic rats. Saroglitazar decreased oxidative stress, VEGF receptor signalling, NF-κBp65, and ICAM-1 in the retina of diabetic rats. The beneficial effects of saroglitazar (1 and 4 mg/kg, oral) were also observed on the neovascularization in oxygen-induced retinopathy in newborn rats. Saroglitazar also reduced VEGF-induced angiogenesis in CAM assay. This study reveals that saroglitazar has the potential to prevent the progression of retinopathy in diabetic patients.


Assuntos
Inibidores da Angiogênese/farmacologia , Retinopatia Diabética/tratamento farmacológico , PPAR alfa/agonistas , PPAR gama/agonistas , Fenilpropionatos/farmacologia , Pirróis/farmacologia , Retina/efeitos dos fármacos , Neovascularização Retiniana/tratamento farmacológico , Vasos Retinianos/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Embrião de Galinha , Diabetes Mellitus Experimental/induzido quimicamente , Retinopatia Diabética/etiologia , Retinopatia Diabética/metabolismo , Retinopatia Diabética/patologia , Feminino , Hiperóxia/complicações , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Neovascularização Fisiológica/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Retina/metabolismo , Retina/patologia , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Vasos Retinianos/metabolismo , Vasos Retinianos/patologia , Transdução de Sinais , Estreptozocina , Fator de Transcrição RelA/metabolismo
8.
Drug Dev Res ; 82(6): 852-860, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33480036

RESUMO

Chronic kidney disease (CKD) is associated with activated inflammatory responses. Desidustat, a prolyl hydroxylase (PHD) inhibitor is useful for treatment of anemia associated with CKD, but its effect on the inflammatory and fibrotic changes in CKD is not evaluated. In this study, we investigated the effect of desidustat on the inflammatory and fibrotic changes in preclinical models of acute and chronic kidney injury. Acute kidney injury was induced in male Sprague Dawley rats by ischemia-reperfusion, in which effect of desidustat (15 mg/kg, PO) was estimated. In a separate experiment, male C57 mice were treated with adenine for 14 days to induce CKD. These mice were treated with desidustat (15 mg/kg, PO, alternate day) treatment for 14 days, with adenine continued. Desidustat prevented elevation of serum creatinine, urea, IL-1ß, IL-6, and kidney injury molecule-1 (KIM-1), and elevated the erythropoietin levels in rats that were subjected to acute kidney injury. Mice treated with adenine developed CKD and anemia, and desidustat treatment caused improvement in serum creatinine, urea, and also improved hemoglobin and reduced hepatic and serum hepcidin. A significant reduction in IL-1ß, IL-6, myeloperoxidase (MPO) and oxidative stress was observed by desidustat treatment. Desidustat treatment also reduced renal fibrosis as observed by histological analysis and hydroxyproline content. Desidustat treatment reduced the renal fibrosis and inflammation along with a reduction in anemia in preclinical models of kidney injury, which may translate to protective effects in CKD patients.


Assuntos
Inibidores de Prolil-Hidrolase , Quinolonas , Traumatismo por Reperfusão , Animais , Citocinas/metabolismo , Rim , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Inibidores de Prolil-Hidrolase/farmacologia , Quinolonas/farmacologia , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia
9.
Drug Res (Stuttg) ; 70(8): 376-384, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32645724

RESUMO

BACKGROUND: Obesity and diabetes are major metabolic disorders that progress to severe morbidity and mortality. Neuroendocrine mechanisms controlling energy balance indicate that combination therapies are needed to sustain weight loss. Lorcaserin was one of the approved therapies for the treatment of obesity, which is recently withdrawn because a safety clinical trial, shows an increased occurrence of cancer. Coagonist of glucagon-like-peptide-1 (GLP-1) and glucagon receptors is a novel investigational therapy demonstrated to have both anti-obesity and anti-diabetic effect. Here, we investigated the effect of combination of lorcaserin and a GLP-1 and glucagon receptors coagonist in diet-induced obese (DIO) mice model. METHODS: The diet-induced obese C57BL/6J mice were used to assess acute and chronic effect of lorcaserin, coagonist of GLP-1and glucagon receptors and their combination on food intake, body weight, and biochemical parameters. RESULTS: In acute study, combination of lorcaserin and coagonist causes synergistic reductions in food intake and body weight. Repeated treatment of combination of lorcaserin and coagonist showed enhanced body weight loss over time, which is due to reduction in fat mass (subcutaneous, retroperitoneal, mesenteric and epididymal fat pad) compared to individual therapy. Also, suppression of locomotor activity seen with lorcaserin was not evident in combination with coagonist. No additive effect was observed in glucose tolerance (intraperitoneal glucose tolerance test or insulin tolerance test), serum lipids, hepatic lipids, and energy expenditure in combination group. CONCLUSION: These data suggest that combination of lorcaserin and coagonist could be a better combination to induce body weight loss.


Assuntos
Benzazepinas/farmacologia , Peptídeo 1 Semelhante ao Glucagon/agonistas , Glucagon/agonistas , Doenças Metabólicas/tratamento farmacológico , Obesidade/tratamento farmacológico , Animais , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica , Metabolismo Energético/efeitos dos fármacos , Teste de Tolerância a Glucose/métodos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Receptores de Glucagon/metabolismo , Redução de Peso/efeitos dos fármacos
10.
Curr Mol Pharmacol ; 12(2): 139-146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30747091

RESUMO

BACKGROUND: Balanced coagonists of glucagon-like peptide-1 (GLP-1) and glucagon receptors are emerging therapies for the treatment of obesity and diabetes. Such coagonists also regulate lipid metabolism, independent of their body weight lowering effects. Many actions of the coagonists are partly mediated by fibroblast growth factor 21 (FGF21) signaling, with the major exception of bile homeostasis. Since thyroid hormone is an important regulator of bile homeostasis, we studied the involvement of thyroid hormone in coagonist-induced changes in lipid and bile metabolism. METHODS: We evaluated the effect of a single dose of coagonist Aib2 C24 chimera2 at 150 to 10000 µg/kg on tetraiodothyronine (T4) and triiodothyronine (T3) in high-fat diet-induced obese (DIO) mice and chow-fed mice. Repeated dose treatment of coagonist (150 µg/kg, subcutaneously) was assessed in four mice models namely, on lipid and bile homeostasis in DIO mice, propylthiouracil (PTU)-treated DIO mice, methimazole (MTM)-treated DIO mice and choline-deficient, L-amino acid-defined, highfat diet (CDAHFD)-induced nonalcoholic steatohepatitis (NASH). RESULTS: Single dose treatment of coagonist did not alter serum T3 and T4 in chow-fed mice and DIO mice. Coagonist treatment improved lipid metabolism and biliary cholesterol excretion. Chronic treatment of GLP-1 and glucagon coagonist did not alter serum T3 in hypothyroid DIO mice and CDAHFDinduced NASH. Coagonist increased serum T4 in DIO mice after 4 and 40 weeks of treatment, though no change in T4 levels was observed in hypothyroid mice or mice with NASH. CONCLUSION: Our data demonstrate that coagonist of GLP-1 and glucagon receptors does not modulate bile homeostasis via thyroid signaling.


Assuntos
Bile/metabolismo , Peptídeo 1 Semelhante ao Glucagon/agonistas , Receptores de Glucagon/agonistas , Tiroxina/sangue , Tri-Iodotironina/sangue , Animais , Dieta Hiperlipídica , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Metimazol/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/etiologia , Obesidade/metabolismo , Propiltiouracila/farmacologia , Receptores de Glucagon/metabolismo , Triglicerídeos/análise
11.
Eur J Pharmacol ; 843: 113-120, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30458168

RESUMO

Chronic inflammatory diseases are often associated with anemia. In such conditions, anemia is generally treated with erythropoiesis stimulating agents (ESAs) which are associated with potentially hazardous side effects and poor outcomes. Suboptimal erythropoiesis in chronic inflammation is believed to be caused by elevated hepcidin levels, which causes blockade of iron in tissue stores. In the current work using rodent models of inflammation, an orally available small molecule prolyl hydroxylase inhibitor desidustat was assessed as an effective treatment of anemia of inflammation. In BALB/c mice, a single dose treatment of desidustat attenuated the effect of lipopolysaccharide (LPS) - or turpentine oil-induced inflammation and increased serum erythropoietin (EPO), iron, and reticulocyte count, and decreased serum hepcidin levels. In turpentine oil-induced anemia in BALB/c mice, repeated dose desidustat treatment increased hemoglobin, RBC and hematocrit in a dose related manner. In female Lewis rats, treatment with desidustat markedly reduced PGPS-induced anemia and increased hemoglobin, red blood cell (RBC) and white blood cell (WBC) count, hematocrit, serum iron and spleen iron. These effects of desidustat were associated with reduction in hepcidin (HAMP) expression as well as reduction in serum hepcidin, and increased EPO expression in liver and kidneys. Desidustat treatment caused a significant increase in expression of Duodenal cytochrome B (DcytB), ferroportin (FPN1) and divalent metal transporter 1 (DMT1) in duodenum, and FPN1 and monocyte chemoattractant protein-1 (MCP-1) in liver suggesting an overall influence on iron metabolism. Thus, pharmacological inhibition of prolyl hydroxylase enzymes can be useful in treatment of anemia of inflammation.


Assuntos
Anemia/tratamento farmacológico , Eritropoese/efeitos dos fármacos , Inibidores de Prolil-Hidrolase/uso terapêutico , Quinolonas/uso terapêutico , Anemia/etiologia , Anemia/metabolismo , Animais , Regulação para Baixo , Eritropoetina/sangue , Feminino , Hepcidinas/sangue , Hepcidinas/genética , Inflamação/complicações , Ferro/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Inibidores de Prolil-Hidrolase/farmacologia , Quinolonas/farmacologia , Ratos Endogâmicos Lew , Contagem de Reticulócitos
12.
World J Diabetes ; 9(6): 80-91, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29988851

RESUMO

AIM: To investigate the role of glucagon-like peptide-1 (GLP-1)/glucagon receptors coagonist on renal dysfunction associated with diabetes and obesity. METHODS: Chronic high-fat diet fed C57BL/6J mice, streptozotocin-treated high-fat diet fed C57BL/6J mice and diabetic C57BLKS/J db/db mice were used as models of diabetes-induced renal dysfunction. The streptozotocin-treated high-fat diet fed mice and db/db mice were treated with the GLP-1 and glucagon receptors coagonist (Aib2 C24 Chimera2, 150 µg/kg, sc) for twelve weeks, while in chronic high-fat diet fed mice, coagonist (Aib2 C24 Chimera2, 150 µg/kg, sc) treatment was continued for forty weeks. Kidney function, histology, fibrosis, inflammation, and plasma biochemistry were assessed at the end of the treatment. RESULTS: Coagonist treatment decreased body weight, plasma lipids, insulin resistance, creatinine, blood urea nitrogen, urinary albumin excretion rate and renal lipids. In kidney, expression of lipogenic genes (SREBP-1C, FAS, and SCD-1) was decreased, and expression of genes involved in ß-oxidation (CPT-1 and PPAR-α) was increased due to coagonist treatment. In plasma, coagonist treatment increased adiponectin and FGF21 and decreased IL-6 and TNF-α. Coagonist treatment reduced expression of inflammatory (TNF-α, MCP-1, and MMP-9) and pro-fibrotic (TGF-ß, COL1A1, and α-SMA) genes and also improved histological derangement in renal tissue. CONCLUSION: Coagonist of GLP-1 and glucagon receptors alleviated diabetes and obesity-induced renal dysfunction by reducing glucose intolerance, obesity, and hyperlipidemia.

13.
Can J Physiol Pharmacol ; 96(6): 587-596, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29406832

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is often associated with obesity and type 2 diabetes. Coagonists of glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) are under clinical investigation for the treatment of obesity and type 2 diabetes. In this study, we have demonstrated the effect of a balanced coagonist in the treatment of NAFLD using mouse models. GLP-1R agonist exendin-4, glucagon, and coagonist (Aib2 C24 chimera2) were administered to C57BL6/J mice, in which NAFLD was induced by carbon tetrachloride (CCl4) treatment after high-fat diet (HFD) feeding, and choline-deficient, L-amino-acid-defined HFD (CDAHFD) feeding. Repeated dose administration of coagonist significantly attenuated liver inflammation and steatosis induced by acute and long-term treatment with CCl4 in HFD-fed mice. Coagonist markedly attenuated the CDAHFD-induced expression of TIMP-1, MMP-9, TNF-α, MCP-1, COL1A1, and α-SMA. It also inhibited progression of hepatic steatosis and fibrosis in mice. Exendin-4 was better than glucagon, but coagonist was most effective in reduction of hepatic inflammation as well as steatosis. Coagonist of GLP-1R and GCGR improved NAFLD in C57BL6/J mice. This effect is mediated by reduction in lipotoxicity and inflammation in liver.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Glucagon/farmacologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Peptídeos/farmacologia , Receptores de Glucagon/agonistas , Peçonhas/farmacologia , Animais , Exenatida , Glucagon/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Peptídeos/uso terapêutico , Peçonhas/uso terapêutico
14.
Chem Biol Interact ; 282: 13-21, 2018 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-29325849

RESUMO

Dyslipidemia enhances progression of atherosclerosis. Coagonist of GLP-1 and glucagon are under clinical investigation for the treatment of obesity and diabetes. Earlier, we have observed that coagonist reduced circulating and hepatic lipids, independent of its anorexic effects. Here, we investigated the role of coagonist of GLP-1 and glucagon receptors in complications of diet-induced dyslipidemia in hamsters and humanized double transgenic mice. Hamsters fed on high fat high cholesterol diet were treated for 8 weeks with coagonist of GLP-1 and glucagon receptors (75 and 150 µg/kg). Pair-fed control was maintained. Cholesterol fed transgenic mice overexpressing hApoB100 and hCETP with coagonist (300 µg/kg) for 4 weeks. After the completion of treatment, biochemical estimations were done. Coagonist treatment reduced triglycerides in plasma, liver and aorta, plasma cholesterol and hepatic triglyceride secretion rate. Expressions of HMG-CoA reductase and SBREBP-1C were reduced and expressions of LDLR, CYP7A1, ABCA1 and ABCB11 were increased in liver, due to coagonist treatment. Coagonist treatment increased bile flow rate and biliary cholesterol excretion. IL-6 and TNF-α were reduced in plasma and expression of TNF-α, MCP-1, MMP-9 and TIMP-1 decreased in liver. Treatment with coagonist reduced oxidative stress in liver and aorta. Energy expenditure was increased and respiratory quotient was reduced by coagonist treatment. These changes were correlated with reduced hepatic inflammation and lipids in liver and aorta in coagonist treated hamsters. Coagonist treatment also reduced lipids in cholesterol-fed transgenic mice. These changes were independent of glycaemia and anorexia observed after coagonist treatment. Long term treatment with coagonist of GLP-1 and glucagon receptor ameliorated diet-induced dyslipidemia and atherosclerosis by regulating bile homeostasis, liver inflammation and energy expenditure.


Assuntos
Aterosclerose/metabolismo , Dislipidemias/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucagon/metabolismo , Inflamação/metabolismo , Fígado/metabolismo , Animais , Aterosclerose/patologia , Colesterol/metabolismo , Cricetinae , Dislipidemias/patologia , Inflamação/patologia , Metabolismo dos Lipídeos/fisiologia , Fígado/patologia , Masculino , Camundongos , Camundongos Transgênicos , Receptores de Glucagon/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-29357809

RESUMO

BACKGROUND: Obesity, diabetes and dyslipidemica are the key pathogenic stimulus that enhances progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Coagonist of Glucagon Like- Peptide-1 (GLP-1) Receptor (GLP-1R) and Glucagon Receptor (GCGR) are being evaluated for obesity and diabetes. GLP-1 analogs have shown to reverse diabetes and obesity. Glucagon treatment reduces lipids after acute and chronic treatment. OBJECTIVE: In this study, we have investigated the effect of co-agonist on the prevention of NAFLD induced by long-term feeding of High Fat Diet (HFD). METHOD: We have used HFD to induce NAFLD after chronic feeding in mice. Co-agonist treatment (150 µg.kg-1, s.c.) was initiated with induction of HFD, which was continued for 40 weeks. Body weight, food intake, glucose homeostasis, lipid profile, inflammatory and fibrotic markers were assessed at the end of treatment. RESULTS: Co-agonist treatment prevented body weight gain, glucose intolerance and insulin resistance. Treatment with co-agonist reduced NEFA, increased FGF21 and adiponectin levels. Co-agonist increased glycerol release and energy expenditure, while decreased respiratory quotient. Co-agonist reduced lipids in circulation and liver. Expression of SREBP-1C, SCD-1, ACC and FAS were decreased, while ACOX1 and CPT1 were increased after co-agonist treatment. Inflammatory cytokine TNF-α and IL-6 in plasma and expression of MCP-1, TGF-ß, MMP-9, TNF-α, TIMP-1, α-SMA, and COL1A1 were decreased after co-agonist treatment. Plasma transaminases, hepatic TBARS, hepatic hydroxyproline and relative liver weight were suppressed after co-agonist treatment. Fat accumulation, inflammation and fibrosis were reduced in histological assessment of liver in co-agonist treated animals. CONCLUSION: Co-agonist prevented development of HFD-induced NAFLD by ameliorating obesity, diabetes, inflammation and fibrosis.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Receptores de Glucagon/agonistas , Animais , Dieta Hiperlipídica , Humanos , Masculino , Camundongos , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Reação em Cadeia da Polimerase em Tempo Real
16.
Xenobiotica ; 48(1): 37-44, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28042744

RESUMO

1. ZYAN1 is a prolyl hydroxylase inhibitor in clinical development for treatment of anemia associated with chronic kidney disease (CKD). We evaluated the effect of acute and chronic kidney impairment on the pharmacokinetics of ZYAN1 in rat models. 2. Cisplatin (2.5, 5 and 7.5 mg/kg) was used to induce acute kidney injury (AKI), and five-sixth and total nephrectomy was used to induce chronic kidney injury (CKI) in male Wistar rats. All groups received a single 15 mg/kg oral dose of ZYAN1. Blood/urine samples were analyzed for ZYAN1 to assess peak concentration (Cmax), area under the concentration-time curve (AUCinf), total body clearance (CL/F) and elimination half-life (T1/2). 3. Cmax and AUCinf were not significantly different in the various AKI groups or in five-sixth nephrectomized rats, as compared to control rats. Recovery of ZYAN1 in urine was reduced; the impact on the CL/F was minimal. There was a 2-fold increase in AUCinf with reduction in CL/F in total nephrectomized rats. T1/2 was longer for ZYAN1 in the severe AKI/five-sixth nephrectomy rats and total nephrectomy rats as compared to control rats. 4. Based on the rodent data it may be inferred that PK of ZYAN1 in CKD patients may be minimally affected.


Assuntos
Falência Renal Crônica/metabolismo , Quinolonas/farmacocinética , Anemia/complicações , Anemia/tratamento farmacológico , Animais , Masculino , Quinolonas/uso terapêutico , Ratos , Ratos Wistar
17.
Biomed Pharmacother ; 98: 364-371, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29275178

RESUMO

Coagonists of Glucagon-like peptide-1 (GLP-1) and glucagon receptors are under clinical investigation for treatment of obesity associated with diabetes. In addition to their role in glucose homeostasis, GLP-1 and glucagon modulate lipid metabolism. In this study, we have investigated the role of central GLP-1 receptor (GLP-1R) and glucagon receptor (GCGR) activation in regulation of lipid metabolism in cholesterol-fed hamsters. Hamsters were treated with coagonist alone (0.3 µg) or in combination with either GLP-1R antagonist (0.15 µg) or GCGR antagonist (0.3 µg) for 4 weeks by intracerebroventricular route (icv). A pair-fed control to coagonist was included in the experiment. In a separate experiment, vagotomized hamsters were treated with coagonist (0.3 µg) for four weeks. At the end of the treatment, plasma and hepatic lipids, bile homeostasis, and hepatic gene expression were determined. Coagonist treatment caused a reduction in plasma and liver lipids, and reduced triglyceride absorption from intestine. Also, hepatic triglyceride secretion, bile flow, and biliary cholesterol excretion were increased by the coagonist treatment. Coagonist treatment exhibited increased energy expenditure and reduced the expression of SREBP-1C, HMG-CoA reductase, SCD-1, FAS and ACC in liver. Increase in the expression of LDLR, ACOX1, CPT-1, PPAR-α, CYP7A1, ABCA1 and ABCB11 was also observed in liver. The effect of coagonist on lipids was partially blocked by either GLP-1R or GCGR antagonist. Coadministration of GLP-1R antagonist blocked the effect of coagonist on bile flow, while effect of coagonist on biliary cholesterol was blocked by co-administration of GCGR antagonist. Coagonist did not affect lipid metabolism in vagotomized hamsters. It appears that central administration of coagonist reduces dyslipidemia by activation of GLP-1R and GCGR, independent of its anorectic effect.


Assuntos
Dislipidemias/metabolismo , Peptídeo 1 Semelhante ao Glucagon/agonistas , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptores de Glucagon/agonistas , Receptores de Glucagon/metabolismo , Animais , Colesterol/metabolismo , Metabolismo Energético/fisiologia , Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Homeostase/fisiologia , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Masculino , Mesocricetus , Obesidade/metabolismo , Transdução de Sinais/fisiologia , Triglicerídeos/metabolismo
18.
Drug Res (Stuttg) ; 67(12): 730-736, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28898910

RESUMO

Hyperlipidemia is often associated with obesity and diabetes, and can lead to serious complications like atherosclerosis and fatty liver disease. Coagonist of GLP-1 and glucagon receptors is a therapy under clinical investigation for treatment of obesity and diabetes. In this study, we have characterized the mechanism of hypolipidemic effect of a balanced coagonist using high cholesterol-fed hamsters. Tyloxapol-induced hypertriglyceridemia, lipolysis in adipose tissue, and bile homeostasis were assessed after repeated dose treatment of the coagonist of GLP-1 and glucagon receptors (Aib2 C24 chimera 2, SC). Antagonists of GLP-1, glucagon, and FGF21 receptors were coadministered, and FGF21 sensitivity was determined in liver and adipose tissue. Repeated dose treatment of coagonist reduced cholesterol and increased FGF21 in blood and liver. Coagonist treatment reduced hepatic triglyceride secretion, increased lipolysis and reduced body weight. Antagonism of GLP-1 and glucagon receptors partially blocked the effect of the coagonist on lipid metabolism in circulation and liver, while FGF21 receptor antagonist completely abolished it. Glucagon and GLP-1 receptors antagonists blocked the action of coagonist on cholesterol excretion and bile flow in liver, but FGF21 antagonist was not effective. Treatment with the coagonist increased expression of FGF21, FGF21R and cofactor ßKlotho in liver and adipose. In conclusion, coagonist of GLP-1 and glucagon receptors improved lipid metabolism in liver of dyslipidemic hamsters. This effect is partially mediated by GLP-1 and glucagon receptors, and the improved FGF21 sensitivity could be the mechanism of hypolipidemic action of the coagonist of GLP-1/glucagon receptors.


Assuntos
Ácidos Aminoisobutíricos/uso terapêutico , Dipeptídeos/uso terapêutico , Fatores de Crescimento de Fibroblastos/metabolismo , Peptídeo 1 Semelhante ao Glucagon/agonistas , Hiperlipidemias/tratamento farmacológico , Fragmentos de Peptídeos/uso terapêutico , Receptores de Glucagon/agonistas , Tecido Adiposo/metabolismo , Animais , Bile/metabolismo , Colesterol/sangue , Colesterol/metabolismo , Cricetinae , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/sangue , Glucagon/antagonistas & inibidores , Peptídeo 1 Semelhante ao Glucagon/antagonistas & inibidores , Homeostase , Hiperlipidemias/sangue , Hiperlipidemias/induzido quimicamente , Lipólise/efeitos dos fármacos , Fígado/metabolismo , Masculino , Polietilenoglicóis , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Receptores de Fatores de Crescimento de Fibroblastos/biossíntese , Triglicerídeos/sangue
19.
Br J Pharmacol ; 174(14): 2346-2357, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28452143

RESUMO

BACKGROUND AND PURPOSE: Dipeptidyl peptidase (DPP)-4 inhibitors increase levels of glucagon-like peptide-1 (GLP-1) and provide clinical benefit in the treatment of type 2 diabetes mellitus. As longer acting inhibitors have therapeutic advantages, we developed a novel DPP-4 inhibitor, ZY15557, that has a sustained action and long half-life. EXPERIMENTAL APPROACH: We studied the potency, selectivity, efficacy and duration of action of ZY15557, in vitro, with assays of DPP-4 activity. In vivo, the pharmacodymamics and pharmacokinetics of ZY15557 were studied, using db/db mice and Zucker fatty rats, along with normal mice, rats, dogs and non-human primates. KEY RESULTS: ZY15557 is a potent, competitive and long acting inhibitor of DPP-4 (Ki 5.53 nM; Koff 3.2 × 10-4 ·s-1 , half-life 35.8 min). ZY15557 treatment inhibited DPP-4 activity, and enhanced active GLP-1 and insulin in mice and rats, providing dose-dependent anti-hyperglycaemic effects. Anti-hyperglycaemic effects were also observed in db/db mice and Zucker fatty rats. Following oral dosing, ZY15557 significantly inhibited plasma DPP-4 activity, determined ex vivo, in mice and rats for more than 48 h, and for up to 168 h in dogs and non-human primates. Allometric scaling predicts a half-life for ZY15557 in humans of up to 60 h. CONCLUSIONS AND IMPLICATIONS: ZY15557 is a potent, competitive and long acting DPP-4 inhibitor. ZY15557 showed similar DPP-4 inhibition across different species. ZY15557 showed excellent oral bioavailability in preclinical species. It showed a low plasma clearance (CL) and large volume of distribution (Vss ) across species, resulting in an extended half-life.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Piranos/farmacologia , Animais , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Inibidores da Dipeptidil Peptidase IV/química , Cães , Relação Dose-Resposta a Droga , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Estrutura Molecular , Piranos/química , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Ratos Zucker , Relação Estrutura-Atividade
20.
Drug Res (Stuttg) ; 67(6): 318-326, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28445900

RESUMO

Increased lipid levels in blood contribute to increasing the risk of diabetic complications. Glucagon exerts lipid lowering effects in diabetic state. However, the mechanism behind the lipid reduction by glucagon independent of glucose homeostasis is not well understood. We assessed the actions of glucagon on lipid modulation in blood and markers in liver in hyperlipidemic hamsters and rats. Male Sprague Dawley rats and Golden Syrian hamsters on a hyperlipidemic diet for 2 weeks were administered a single dose of glucagon by subcutaneous (SC, 150 and 300 µg/kg) or intracerebroventricular (ICV, 15 and 30 µg/animal) route. Effect of acute treatment was observed on tyloxapol-induced hypertriglyceridemia, corn oil-induced post-prandial lipemia, and bile flow. A repeated dose treatment by subcutaneous (300 µg/kg) or intracerebroventricular (30 µg/animal) route was done for 2 weeks, following which circulating and hepatic lipids, hepatic markers of lipid metabolism and bile flow were assessed. Acute administration of glucagon (SC and ICV) decreased triglyceride absorption, hepatic triglyceride secretion rate and increased excretion of cholesterol in bile fluid in dose related manner. Repeated dose treatment reduced circulating and hepatic lipids and mainly LDL, and enhanced cholesterol excretion in bile. In liver, expression of HMG-CoA reductase was reduced while that of ABCA1 was increased after repeated treatment, whereas pair fed group did not show significant changes when compared to the control group. These findings demonstrate that central as well as peripheral glucagon effectively reduces hyperlipidemia in rat and hamster model, by modulating hepatic lipid metabolism.


Assuntos
Glucagon/farmacologia , Hiperlipidemias/tratamento farmacológico , Lipídeos/sangue , Fígado/efeitos dos fármacos , Acil Coenzima A , Animais , Colesterol/sangue , Cricetinae , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Glucagon/administração & dosagem , Injeções Intraventriculares , Injeções Subcutâneas , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Masculino , Mesocricetus , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...