Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055138

RESUMO

Many complex molecular interactions are involved in the process of craniofacial development. Consequently, the network is sensitive to genetic mutations that may result in congenital malformations of varying severity. The most common birth anomalies within the head and neck are orofacial clefts (OFCs) and prognathism. Orofacial clefts are disorders with a range of phenotypes such as the cleft of the lip with or without cleft palate and isolated form of cleft palate with unilateral and bilateral variations. They may occur as an isolated abnormality (nonsyndromic-NSCLP) or coexist with syndromic disorders. Another cause of malformations, prognathism or skeletal class III malocclusion, is characterized by the disproportionate overgrowth of the mandible with or without the hypoplasia of maxilla. Both syndromes may be caused by the presence of environmental factors, but the majority of them are hereditary. Several mutations are linked to those phenotypes. In this review, we summarize the current knowledge regarding the genetics of those phenotypes and describe genotype-phenotype correlations. We then present the animal models used to study these defects.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Mutação , Prognatismo/genética , Animais , Modelos Animais de Doenças , Redes Reguladoras de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos
2.
Int J Mol Sci ; 22(12)2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198654

RESUMO

Bone morphogenetic proteins (BMPs) were originally identified as the active components in bone extracts that can induce ectopic bone formation. In recent decades, their key role has broadly expanded beyond bone physiology and pathology. Nowadays, the BMP pathway is considered an important player in vascular signaling. Indeed, mutations in genes encoding different components of the BMP pathway cause various severe vascular diseases. Their signaling contributes to the morphological, functional and molecular heterogeneity among endothelial cells in different vessel types such as arteries, veins, lymphatic vessels and capillaries within different organs. The BMP pathway is a remarkably fine-tuned pathway. As a result, its signaling output in the vessel wall critically depends on the cellular context, which includes flow hemodynamics, interplay with other vascular signaling cascades and the interaction of endothelial cells with peri-endothelial cells and the surrounding matrix. In this review, the emerging role of BMP signaling in lymphatic vessel biology will be highlighted within the framework of BMP signaling in the circulatory vasculature.


Assuntos
Vasos Sanguíneos/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Vasos Linfáticos/metabolismo , Transdução de Sinais , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...