Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38005540

RESUMO

In wireless communication, multiple signals are utilized to receive and send information in the form of signals simultaneously. These signals consume little power and are usually inexpensive, with a high data rate during data transmission. An Multi Input Multi Output (MIMO) system uses numerous antennas to enhance the functionality of the system. Moreover, system intricacy and power utilization are difficult and highly complicated tasks to achieve in an Analog to Digital Converter (ADC) at the receiver side. An infinite number of MIMO channels are used in wireless networks to improve efficiency with Cross Entropy Optimization (CEO). ADC is a serious issue because the data of the accepted signal are completely lost. ADC is used in the MIMO channels to overcome the above issues, but it is very hard to implement and design. So, an efficient way to enhance the estimation of channels in the MIMO system is proposed in this paper with the utilization of the heuristic-based optimization technique. The main task of the implemented channel prediction framework is to predict the channel coefficient of the MIMO system at the transmitter side based on the receiver side error ratio, which is obtained from feedback information using a Hybrid Serial Cascaded Network (HSCN). Then, this multi-scaled cascaded autoencoder is combined with Long Short Term Memory (LSTM) with an attention mechanism. The parameters in the developed Hybrid Serial Cascaded Multi-scale Autoencoder and Attention LSTM are optimized using the developed Hybrid Revised Position-based Wild Horse and Energy Valley Optimizer (RP-WHEVO) algorithm for minimizing the "Root Mean Square Error (RMSE), Bit Error Rate (BER) and Mean Square Error (MSE)" of the estimated channel. Various experiments were carried out to analyze the accomplishment of the developed MIMO model. It was visible from the tests that the developed model enhanced the convergence rate and prediction performance along with a reduction in the computational costs.

2.
Sci Rep ; 13(1): 12545, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37532702

RESUMO

In this paper we study the oscillatory behavior of a new class of memristor based neural networks with mixed delays and we prove the existence and uniqueness of the periodic solution of the system based on the concept of Filippov solutions of the differential equation with discontinuous right-hand side. In addition, some assumptions are determined to guarantee the globally exponentially stability of the solution. Then, we study the adaptive finite-time complete periodic synchronization problem and by applying Lyapunov-Krasovskii functional approach, a new adaptive controller and adaptive update rule have been developed. A useful finite-time complete synchronization condition is established in terms of linear matrix inequalities. Finally, an illustrative simulation is given to substantiate the main results.

3.
Sensors (Basel) ; 23(13)2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37447966

RESUMO

Cloud computing plays an important role in every IT sector. Many tech giants such as Google, Microsoft, and Facebook as deploying their data centres around the world to provide computation and storage services. The customers either submit their job directly or they take the help of the brokers for the submission of the jobs to the cloud centres. The preliminary aim is to reduce the overall power consumption which was ignored in the early days of cloud development. This was due to the performance expectations from cloud servers as they were supposed to provide all the services through their services layers IaaS, PaaS, and SaaS. As time passed and researchers came up with new terminologies and algorithmic architecture for the reduction of power consumption and sustainability, other algorithmic anarchies were also introduced, such as statistical oriented learning and bioinspired algorithms. In this paper, an indepth focus has been done on multiple approaches for migration among virtual machines and find out various issues among existing approaches. The proposed work utilizes elastic scheduling inspired by the smart elastic scheduling algorithm (SESA) to develop a more energy-efficient VM allocation and migration algorithm. The proposed work uses cosine similarity and bandwidth utilization as additional utilities to improve the current performance in terms of QoS. The proposed work is evaluated for overall power consumption and service level agreement violation (SLA-V) and is compared with related state of art techniques. A proposed algorithm is also presented in order to solve problems found during the survey.


Assuntos
Algoritmos , Computação em Nuvem , Humanos
4.
Diagnostics (Basel) ; 13(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37238263

RESUMO

The growth of biomedical engineering has made depression diagnosis via electroencephalography (EEG) a trendy issue. The two significant challenges to this application are EEG signals' complexity and non-stationarity. Additionally, the effects caused by individual variances may hamper the generalization of detection systems. Given the association between EEG signals and particular demographics, such as gender and age, and the influences of these demographic characteristics on the incidence of depression, it would be preferable to include demographic factors during EEG modeling and depression detection. The main objective of this work is to develop an algorithm that can recognize depression patterns by studying EEG data. Following a multiband analysis of such signals, machine learning and deep learning techniques were used to detect depression patients automatically. EEG signal data are collected from the multi-modal open dataset MODMA and employed in studying mental diseases. The EEG dataset contains information from a traditional 128-electrode elastic cap and a cutting-edge wearable 3-electrode EEG collector for widespread applications. In this project, resting EEG readings of 128 channels are considered. According to CNN, training with 25 epoch iterations had a 97% accuracy rate. The patient's status has to be divided into two basic categories: major depressive disorder (MDD) and healthy control. Additional MDD include the following six classes: obsessive-compulsive disorders, addiction disorders, conditions brought on by trauma and stress, mood disorders, schizophrenia, and the anxiety disorders discussed in this paper are a few examples of mental illnesses. According to the study, a natural combination of EEG signals and demographic data is promising for the diagnosis of depression.

5.
Diagnostics (Basel) ; 12(12)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36553145

RESUMO

Schistosomiasis is a neglected tropical disease that continues to be a leading cause of illness and mortality around the globe. The causing parasites are affixed to the skin through defiled water and enter the human body. Failure to diagnose Schistosomiasis can result in various medical complications, such as ascites, portal hypertension, esophageal varices, splenomegaly, and growth retardation. Early prediction and identification of risk factors may aid in treating disease before it becomes incurable. We aimed to create a framework by incorporating the most significant features to predict Schistosomiasis using machine learning techniques. A dataset of advanced Schistosomiasis has been employed containing recovery and death cases. A total data of 4316 individuals containing recovery and death cases were included in this research. The dataset contains demographics, socioeconomic, and clinical factors with lab reports. Data preprocessing techniques (missing values imputation, outlier removal, data normalisation, and data transformation) have also been employed for better results. Feature selection techniques, including correlation-based feature selection, Information gain, gain ratio, ReliefF, and OneR, have been utilised to minimise a large number of features. Data resampling algorithms, including Random undersampling, Random oversampling, Cluster Centroid, Near miss, and SMOTE, are applied to address the data imbalance problem. We applied four machine learning algorithms to construct the model: Gradient Boosting, Light Gradient Boosting, Extreme Gradient Boosting and CatBoost. The performance of the proposed framework has been evaluated based on Accuracy, Precision, Recall and F1-Score. The results of our proposed framework stated that the CatBoost model showed the best performance with the highest accuracy of (87.1%) compared with Gradient Boosting (86%), Light Gradient Boosting (86.7%) and Extreme Gradient Boosting (86.9%). Our proposed framework will assist doctors and healthcare professionals in the early diagnosis of Schistosomiasis.

6.
Diagnostics (Basel) ; 12(12)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36553152

RESUMO

Skin cancer is one of the most severe forms of the disease, and it can spread to other parts of the body if not detected early. Therefore, diagnosing and treating skin cancer patients at an early stage is crucial. Since a manual skin cancer diagnosis is both time-consuming and expensive, an incorrect diagnosis is made due to the high similarity between the various skin cancers. Improved categorization of multiclass skin cancers requires the development of automated diagnostic systems. Herein, we propose a fully automatic method for classifying several skin cancers by fine-tuning the deep learning models VGG16, ResNet50, and ResNet101. Prior to model creation, the training dataset should undergo data augmentation using traditional image transformation techniques and Generative Adversarial Networks (GANs) to prevent class imbalance issues that may lead to model overfitting. In this study, we investigate the feasibility of creating dermoscopic images that have a realistic appearance using Conditional Generative Adversarial Network (CGAN) techniques. Thereafter, the traditional augmentation methods are used to augment our existing training set to improve the performance of pre-trained deep models on the skin cancer classification task. This improved performance is then compared to the models developed using the unbalanced dataset. In addition, we formed an ensemble of finely tuned transfer learning models, which we trained on balanced and unbalanced datasets. These models were used to make predictions about the data. With appropriate data augmentation, the proposed models attained an accuracy of 92% for VGG16, 92% for ResNet50, and 92.25% for ResNet101, respectively. The ensemble of these models increased the accuracy to 93.5%. A comprehensive discussion on the performance of the models concluded that using this method possibly leads to enhanced performance in skin cancer categorization compared to the efforts made in the past.

7.
Healthcare (Basel) ; 10(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36292519

RESUMO

The novel coronavirus 2019 (COVID-19) spread rapidly around the world and its outbreak has become a pandemic. Due to an increase in afflicted cases, the quantity of COVID-19 tests kits available in hospitals has decreased. Therefore, an autonomous detection system is an essential tool for reducing infection risks and spreading of the virus. In the literature, various models based on machine learning (ML) and deep learning (DL) are introduced to detect many pneumonias using chest X-ray images. The cornerstone in this paper is the use of pretrained deep learning CNN architectures to construct an automated system for COVID-19 detection and diagnosis. In this work, we used the deep feature concatenation (DFC) mechanism to combine features extracted from input images using the two modern pre-trained CNN models, AlexNet and Xception. Hence, we propose COVID-AleXception: a neural network that is a concatenation of the AlexNet and Xception models for the overall improvement of the prediction capability of this pandemic. To evaluate the proposed model and build a dataset of large-scale X-ray images, there was a careful selection of multiple X-ray images from several sources. The COVID-AleXception model can achieve a classification accuracy of 98.68%, which shows the superiority of the proposed model over AlexNet and Xception that achieved a classification accuracy of 94.86% and 95.63%, respectively. The performance results of this proposed model demonstrate its pertinence to help radiologists diagnose COVID-19 more quickly.

8.
Comput Intell Neurosci ; 2022: 9414567, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720905

RESUMO

COVID-19 has remained a threat to world life despite a recent reduction in cases. There is still a possibility that the virus will evolve and become more contagious. If such a situation occurs, the resulting calamity will be worse than in the past if we act irresponsibly. COVID-19 must be widely screened and recognized early to avert a global epidemic. Positive individuals should be quarantined immediately, as this is the only effective way to prevent a global tragedy that has occurred previously. No positive case should go unrecognized. However, current COVID-19 detection procedures require a significant amount of time during human examination based on genetic and imaging techniques. Apart from RT-PCR and antigen-based tests, CXR and CT imaging techniques aid in the rapid and cost-effective identification of COVID. However, discriminating between diseased and normal X-rays is a time-consuming and challenging task requiring an expert's skill. In such a case, the only solution was an automatic diagnosis strategy for identifying COVID-19 instances from chest X-ray images. This article utilized a deep convolutional neural network, ResNet, which has been demonstrated to be the most effective for image classification. The present model is trained using pretrained ResNet on ImageNet weights. The versions of ResNet34, ResNet50, and ResNet101 were implemented and validated against the dataset. With a more extensive network, the accuracy appeared to improve. Nonetheless, our objective was to balance accuracy and training time on a larger dataset. By comparing the prediction outcomes of the three models, we concluded that ResNet34 is a more likely candidate for COVID-19 detection from chest X-rays. The highest accuracy level reached 98.34%, which was higher than the accuracy achieved by other state-of-the-art approaches examined in earlier studies. Subsequent analysis indicated that the incorrect predictions occurred with approximately 100% certainty. This uncovered a severe weakness in CNN, particularly in the medical area, where critical decisions are made. However, this can be addressed further in a future study by developing a modified model to incorporate uncertainty into the predictions, allowing medical personnel to manually review the incorrect predictions.


Assuntos
COVID-19 , Aprendizado Profundo , Humanos , Redes Neurais de Computação , SARS-CoV-2 , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...