Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Comput Biol Med ; 161: 106948, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37207406

RESUMO

Although PNLB is generally considered safe, it is still invasive and risky. Pneumothorax, the most common complication of lung puncture, can cause shortness of breath, chest pain, and even life-threatening. Therefore, the auxiliary diagnosis for pneumothorax is of great clinical interest. This paper proposes an ant colony optimizer with slime mould foraging behavior and collaborative hunting, called SCACO, in which slime mould foraging behavior is combined to improve the convergence accuracy and solution quality of ACOR. Then the ability of ACO to jump out of the local optimum is optimized by an adaptive collaborative hunting strategy when trapped in the local optimum. As a first step toward Pneumothorax diagnostic prediction, we suggested an SVM classifier based on bSCACO (bSCACO-SVM), which uses the proposed SCACO's binary version as the basis for its feature selection algorithms. To demonstrate the SCACO performance, we first used the slime mould foraging behavior and adaptive cooperative hunting strategy, then compared SCACO with nine basic algorithms and nine variants, respectively. Finally, we verified bSCACO-SVM on various widely used public datasets and applied it to the Pneumothorax prediction issue, showing that it has robust classification prediction capacity and can be successfully employed for tuberculous pleural effusion diagnostic prediction.


Assuntos
Pneumotórax , Máquina de Vetores de Suporte , Humanos , Algoritmos , Pulmão
2.
Comput Biol Med ; 160: 106950, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37120988

RESUMO

The segmentation of medical images is a crucial and demanding step in medical image processing that offers a solid foundation for subsequent extraction and analysis of medical image data. Although multi-threshold image segmentation is the most used and specialized basic image segmentation technique, it is computationally demanding and often produces subpar segmentation results, hence restricting its application. To solve this issue, this work develops a multi-strategy-driven slime mould algorithm (RWGSMA) for multi-threshold image segmentation. Specifically, the random spare strategy, the double adaptive weigh strategy, and the grade-based search strategy are used to improve the performance of SMA, resulting in an enhanced SMA version. The random spare strategy is mainly used to accelerate the convergence rate of the algorithm. To prevent SMA from falling towards the local optimum, the double adaptive weights are also applied. The grade-based search approach has also been developed to boost convergence performance. This study evaluates the efficacy of RWGSMA from many viewpoints using 30 test suites from IEEE CEC2017 to effectively demonstrate the importance of these techniques in RWGSMA. In addition, numerous typical images were used to show RWGSMA's segmentation performance. Using the multi-threshold segmentation approach with 2D Kapur's entropy as the RWGSMA fitness function, the suggested algorithm was then used to segment instances of lupus nephritis. The experimental findings demonstrate that the suggested RWGSMA beats numerous similar rivals, suggesting that it has a great deal of promise for segmenting histopathological images.


Assuntos
Nefrite Lúpica , Humanos , Nefrite Lúpica/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Entropia , Reconhecimento Automatizado de Padrão/métodos
3.
Artif Intell Rev ; : 1-37, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36694615

RESUMO

The slime mould algorithm (SMA) is a new meta-heuristic algorithm recently proposed. The algorithm is inspired by the foraging behavior of polycephalus slime moulds. It simulates the behavior and morphological changes of slime moulds during foraging through adaptive weights. Although the original SMA's performance is better than most swarm intelligence algorithms, it still has shortcomings, such as quickly falling into local optimal values and insufficient exploitation. This paper proposes a Gaussian barebone mutation enhanced SMA (GBSMA) to alleviate the original SMA's shortcomings. First of all, the Gaussian function in the Gaussian barebone accelerates the convergence while also expanding the search space, which improves the algorithm exploration and exploitation capabilities. Secondly, the differential evolution (DE) update strategy in the Gaussian barebone, using rand as the guiding vector. It also enhances the algorithm's global search performance to a certain extent. Also, the greedy selection is introduced on this basis, which prevents individuals from performing invalid position updates. In the IEEE CEC2017 test function, the proposed GBSMA is compared with a variety of meta-heuristic algorithms to verify the performance of GBSMA. Besides, GBSMA is applied to solve truss structure optimization problems. Experimental results show that the convergence speed and solution accuracy of the proposed GBSMA are significantly better than the original SMA and other similar products. Supplementary Information: The online version contains supplementary material available at 10.1007/s10462-022-10370-7.

4.
Comput Biol Med ; 151(Pt A): 106227, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36368112

RESUMO

Due to the terrible manifestations of skin cancer, it seriously disturbs the quality of life status and health of patients, so we needs treatment plans to detect it early and avoid it causing more harm to patients. Medical disease image threshold segmentation technique can well extract the region of interest and effectively assist in disease recognition. Moreover, in multi-threshold image segmentation, the selection of the threshold set determines the image segmentation quality. Among the common threshold selection methods, the selection based on metaheuristic algorithm has the advantages of simplicity, easy implementation and avoidable local optimization. However, different algorithms have different performances for different medical disease images. For example, the Whale Optimization Algorithm (WOA) does not give a satisfactory performance for thresholding skin cancer images. We propose an improved WOA (LCWOA) in which the Levy operator and chaotic random mutation strategy are introduced to enhance the ability of the algorithm to jump out of the local optimum and to explore the search space. Comparing with different existing WOA variants on the CEC2014 function set, our proposed and improved algorithm improves the efficiency of the search. Experimental results show that our method outperforms the extant WOA variants in terms of optimization performances, improving the convergence accuracy and velocity. The method is also applied to solve the threshold selection in the skin cancer image segmentation problem, and LCWOA also gives excellent performance in obtaining optimal segmentation results.


Assuntos
Neoplasias Cutâneas , Baleias , Animais , Qualidade de Vida , Algoritmos , Neoplasias Cutâneas/diagnóstico por imagem
5.
Comput Biol Med ; 144: 105356, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35299042

RESUMO

Classification models such as Multi-Verse Optimization (MVO) play a vital role in disease diagnosis. To improve the efficiency and accuracy of MVO, in this paper, the defects of MVO are mitigated and the improved MVO is combined with kernel extreme learning machine (KELM) for effective disease diagnosis. Although MVO obtains some relatively good results on some problems of interest, it suffers from slow convergence speed and local optima entrapment for some many-sided basins, especially multi-modal problems with high dimensions. To solve these shortcomings, in this study, a new chaotic simulated annealing overhaul of MVO (CSAMVO) is proposed. Based on MVO, two approaches are adopted to offer a relatively stable and efficient convergence speed. Specifically, a chaotic intensification mechanism (CIP) is applied to the optimal universe evaluation stage to increase the depth of the universe search. After obtaining relatively satisfactory results, the simulated annealing algorithm (SA) is employed to reinforce the capability of MVO to avoid local optima. To evaluate its performance, the proposed CSAMVO approach was compared with a wide range of classical algorithms on thirty-nine benchmark functions. The results show that the improved MVO outperforms the other algorithms in terms of solution quality and convergence speed. Furthermore, based on CSAMVO, a hybrid KELM model termed CSAMVO-KELM is established for disease diagnosis. To evaluate its effectiveness, the new hybrid system was compared with a multitude of competitive classifiers on two disease diagnosis problems. The results demonstrate that the proposed CSAMVO-assisted classifier can find solutions with better learning potential and higher predictive performance.


Assuntos
Algoritmos , Benchmarking
6.
Comput Math Methods Med ; 2013: 925341, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24363779

RESUMO

The efficient target tracking algorithm researches have become current research focus of intelligent robots. The main problems of target tracking process in mobile robot face environmental uncertainty. They are very difficult to estimate the target states, illumination change, target shape changes, complex backgrounds, and other factors and all affect the occlusion in tracking robustness. To further improve the target tracking's accuracy and reliability, we present a novel target tracking algorithm to use visual saliency and adaptive support vector machine (ASVM). Furthermore, the paper's algorithm has been based on the mixture saliency of image features. These features include color, brightness, and sport feature. The execution process used visual saliency features and those common characteristics have been expressed as the target's saliency. Numerous experiments demonstrate the effectiveness and timeliness of the proposed target tracking algorithm in video sequences where the target objects undergo large changes in pose, scale, and illumination.


Assuntos
Máquina de Vetores de Suporte , Algoritmos , Cor , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Modelos Teóricos , Movimento (Física) , Reconhecimento Automatizado de Padrão , Software , Gravação em Vídeo
7.
Comput Math Methods Med ; 2013: 380245, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24382980

RESUMO

Image segmentation process for high quality visual saliency map is very dependent on the existing visual saliency metrics. It is mostly only get sketchy effect of saliency map, and roughly based visual saliency map will affect the image segmentation results. The paper had presented the randomized visual saliency detection algorithm. The randomized visual saliency detection method can quickly generate the same size as the original input image and detailed results of the saliency map. The randomized saliency detection method can be applied to real-time requirements for image content-based scaling saliency results map. The randomization method for fast randomized video saliency area detection, the algorithm only requires a small amount of memory space can be detected detailed oriented visual saliency map, the presented results are shown that the method of visual saliency map used in image after the segmentation process can be an ideal segmentation results.


Assuntos
Algoritmos , Animais , Inteligência Artificial , Atenção , Gráficos por Computador , Simulação por Computador , Humanos , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Reconhecimento Automatizado de Padrão , Distribuição Aleatória , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA