Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tissue Eng Regen Med ; 19(4): 861-870, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35474506

RESUMO

BACKGROUND: Regenerative medicine by using stem cells from dental pulp is promising for treating patients with critical limb ischemic (CLI). Here, we investigated the difference in the angiogenetic ability of stem cells from human exfoliated deciduous teeth (SHED) and human dental pulp stem cells (DPSC). METHODS: SHED and DPSC were harvested from dental pulp and analyzed in flow- cytometry for detecting the expression of surface markers. Levels of angiogenetic marker were examined by RT-PCR and Western-blot. Eighteen immunodeficient mice of critical limb ischemic model were divided into three groups: SHED, DPSC and saline, which was administered with SHED, DPSC or saline intramuscularly. Histological examination was performed to detect the regenerative results. RESULTS: A highly expression of CD146 was detected in SHED. Moreover, cells with negative expression of both CD146 and CD31 in SHED were more in comparison with those in DPSC. Expression of angiogenesis factors including CXCL12, CXCR4, Hif-1a, CD31, VEGF and bFGF were significant higher in SHED than DPSC by the RT-PCR and Western-Blot results. SHED induced more CD31 expression and less fibrous tissue formation in the critical limb ischemic model as compare with DPSC and saline. CONCLUSION: Both SHED and DPSC possessed the ability of repairing CLI. With expressing more proangiogenesis factors, SHED may have the advantage of repairing CLI.


Assuntos
Células-Tronco , Dente Decíduo , Animais , Antígeno CD146/genética , Antígeno CD146/metabolismo , Diferenciação Celular , Proliferação de Células , Humanos , Camundongos
2.
Tissue Eng Regen Med ; 18(4): 641-650, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34275104

RESUMO

BACKGROUND: The role of sex hormones and their receptors has drawn much attention in the process of cartilage regeneration. This study aimed to investigate the effect of androgen receptor (AR) on the chondrogenic ability of articular chondrocytes and the related mechanism. METHODS: Articular chondrocytes were isolated, cultured, identified by toluidine blue staining and then transduced with lentivirus carrying the AR gene. The cell viability was determined using Cell Counting Kit-8, and cell apoptosis was assessed by flow cytometry analysis. The effects of AR overexpression on the expression of cartilage-specific proteins and some signalling molecules were evaluated by real-time PCR and Western blotting. Using 24 New Zealand rabbits, the regeneration of rabbit articular cartilage defects was further investigated in vivo and evaluated histologically. RESULTS: The overexpression of AR significantly reduced the apoptosis rate of chondrocytes but did not affect their proliferation. The overexpression of AR also promoted the expression of Sry-related HMG box 9, collagen II and aggrecan, decreased the expression of matrix metalloproteinase-13, and downregulated p-S6 and RICTOR. The experimental group with AR-overexpressing chondrocytes exhibited superior regeneration of cartilage defects. CONCLUSION: AR overexpression can maintain the phenotype of chondrocytes and promote chondrogenesis in vitro and in vivo. mTOR-related signalling was inhibited.


Assuntos
Cartilagem Articular , Condrócitos , Agrecanas , Animais , Condrogênese/genética , Coelhos , Receptores Androgênicos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA