Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hortic Res ; 11(6): uhae108, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38883334

RESUMO

Cupressaceae is a conifer family rich in plants of horticultural importance, including Cupressus, Chamaecyparis, Juniperus, and Thuja, yet genomic surveys are lacking for this family. Cupressus gigantea, one of the many rare conifers that are threatened by climate change and anthropogenic habitat fragmentation, plays an ever-increasing role in ecotourism in Tibet. To infer how past climate change has shaped the population evolution of this species, we generated a de novo chromosome-scale genome (10.92 Gb) and compared the species' population history and genetic load with that of a widespread close relative, C. duclouxiana. Our demographic analyses, based on 83 re-sequenced individuals from multiple populations of the two species, revealed a sharp decline of population sizes during the first part of the Quaternary. However, populations of C. duclouxiana then started to recover, while C. gigantea populations continued to decrease until recently. The total genomic diversity of C. gigantea is smaller than that of C. duclouxiana, but contrary to expectations, C. gigantea has fewer highly and mildly deleterious mutations than C. duclouxiana, and simulations and statistical tests support purifying selection during prolonged inbreeding as the explanation. Our results highlight the evolutionary consequences of decreased population size on the genetic burden of a long-lived endangered conifer with large genome size and suggest that genetic purging deserves more attention in conservation management.

2.
Mol Ecol Resour ; 23(5): 1142-1154, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36932735

RESUMO

Conifers make up about one third of global forests but are threatened by seed parasitoid wasp species. Many of these wasps belong to the genus Megastigmus, yet little is known about their genomic background. In this study, we provide chromosome-level genome assemblies for two oligophagous conifer parasitoid species of Megastigmus, which represent the first two chromosome-level genomes of the genus. The assembled genomes of Megastigmus duclouxiana and M. sabinae are 878.48 Mb (scaffold N50 of 215.60 Mb) and 812.98 Mb (scaffold N50 of 139.16 Mb), respectively, which are larger than the genome size of most hymenopterans due to the expansion of transposable elements. Expanded gene families highlight the difference in sensory-related genes between the two species, reflecting the difference in their hosts. We further found that these two species have fewer family members but more single-gene duplications than polyphagous congeners in the gene families of ATP-binding cassette transporter (ABC), cytochrome P450 (P450) and olfactory receptors (OR). These findings shed light on the pattern of adaptation to a narrow spectrum of hosts in oligophagous parasitoids. Our findings suggest potential drivers underlying genome evolution and parasitism adaptation, and provide valuable resources for understanding the ecology, genetics and evolution of Megastigmus, as well as for the research and biological control of global conifer forest pests.


Assuntos
Traqueófitas , Vespas , Animais , Vespas/genética , Traqueófitas/genética , Genômica , Adaptação Fisiológica , Cromossomos
3.
Biodivers Data J ; 11: e102828, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38327380

RESUMO

Background: Most species of Megastigmus are considered important economic pests that grow in seeds, especially of conifers. Accurate identification of species is a crucial step for the biological research of parasitic pests and the further application of biological control. However, their large variety, small size, similar morphology and different growth and development stages have brought great challenges to taxonomic research. Traditional morphological identification often takes a long time and this requires us to seek a new method for rapid and accurate identification. Therefore, the better identification of Megastigmus urgently needs to be combined with molecular methods to help taxonomic development. New information: Here, Megastigmusdaduheensis sp. n. (Chalcidoidea: Megastigmidae) was identified, based on morphology and molecular markers, such as COI and Cytb. M.daduheensis sp. n. is distinct from other known species of the same genus in the morphology. The results of the molecular phylogenetic tree, similarity alignment and genetic distance indicate that the COI and Cytb sequences of M.daduheensis sp. n. are highly similar to M.sobinae and M.duclouxiana, but there are some genetic differences. The genetic distances of M.daduheensis sp. nov. with M.duclouxiana and M.sabinae were 0.34 and 0.33 and the percentages of shared base pairs were 76.3% and 76.8%, respectively. Both morphological and molecular data classified M.daduheensis sp. n. as a new species. The obtained COI and Cytb sequences of M.daduheensis sp. n. can be used as DNA barcodes, providing molecular data for rapid and accurate identification of this species in the future.

4.
Genes (Basel) ; 13(7)2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35885955

RESUMO

Comparing gene expressions among parasitic plants infecting different host species can have significant implications for understanding host-parasite interactions. Taxillus nigrans is a common hemiparasitic species in Southwest China that parasitizes a variety of host species. However, a lack of nucleotide sequence data to date has hindered transcriptome-level research on T. nigrans. In this study, the transcriptomes of T. nigrans individuals parasitizing four typical host species (Broussonetia papyrifera (Bpap), a broad-leaved tree species; Cryptomeria fortunei (Cfor), a coniferous tree species; Cinnamomum septentrionale (Csep), an evergreen tree species; and Ginkgo biloba (Gbil), a deciduous-coniferous tree species) were sequenced, and the expression profiles and metabolic pathways were compared among hosts. A total of greater than 400 million reads were generated in nine cDNA libraries. These were de novo assembled into 293823 transcripts with an N50 value of 1790 bp. A large number of differentially expressed genes (DEGs) were identified when comparing T. nigrans individuals on different host species: Bpap vs. Cfor (1253 DEGs), Bpap vs. Csep (864), Bpap vs. Gbil (517), Cfor vs. Csep (259), Cfor vs. Gbil (95), and Csep vs. Gbil (40). Four hundred and fifteen unigenes were common to all six pairwise comparisons; these were primarily associated with Cytochrome P450 and environmental adaptation, as determined in a KEGG enrichment analysis. Unique unigenes were also identified, specific to Bpap vs. Cfor (808 unigenes), Bpap vs. Csep (329 unigenes), Bpap vs. Gbil (87 unigenes), Cfor vs. Csep (108 unigenes), Cfor vs. Gbil (32 unigenes), and Csep vs. Gbil comparisons (23 unigenes); partial unigenes were associated with the metabolism of terpenoids and polyketides regarding plant hormone signal transduction. Weighted gene co-expression network analysis (WGCNA) revealed four modules that were associated with the hosts. These results provide a foundation for further exploration of the detailed molecular mechanisms involved in plant parasitism.


Assuntos
Erva-de-Passarinho , Perfilação da Expressão Gênica , Biblioteca Gênica , Humanos , Redes e Vias Metabólicas/genética , Transcriptoma/genética
5.
Genes (Basel) ; 13(6)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35741786

RESUMO

Pistacia chinensis Bunge (P. chinensis), a dioecious plant species, has been widely found in China. The female P. chinensis plants are more important than male plants in agricultural production, as their seeds can serve as an ideal feedstock for biodiesel. However, the sex of P. chinensis plants is hard to distinguish during the seedling stage due to the scarcity of available transcriptomic and genomic information. In this work, Illumina paired-end RNA sequencing assay was conducted to unravel the transcriptomic profiles of female and male P. chinensis flower buds. In total, 50,925,088 and 51,470,578 clean reads were obtained from the female and male cDNA libraries, respectively. After quality checks and de novo assembly, a total of 83,370 unigenes with a mean length of 1.3 kb were screened. Overall, 64,539 unigenes (77.48%) could be matched in at least one of the NR, NT, Swiss-Prot, COG, KEGG, and GO databases, 71 of which were putatively related to the floral development of P. chinensis. Additionally, 21,662 simple sequence repeat (SSR) motifs were identified in 17,028 unigenes of P. chinensis, and the mononucleotide motif was the most dominant type of repeats (52.59%) in P. chinensis, followed by dinucleotide (22.29%), trinucleotide (20.15%). The most abundant repeats were AG/CT (13.97%), followed by AAC/GTT (6.75%) and AT/TA (6.10%). Based on these SSR, 983 EST-SSR primers were designed, 151 of which were randomly chosen for validation. Of these validated EST-SSR markers, 25 SSR markers were found to be polymorphic between male and female plants. One SSR marker, namelyPCSSR55, displayed excellent specificity in female plants, which could clearly distinguish between male and female P. chinensis. Altogether, our findings not only reveal that the EST-SSR marker is extremely effective in distinguishing between male and female P. chinensis but also provide a solid framework for sex determination of plant seedlings.


Assuntos
Pistacia , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Marcadores Genéticos , Repetições de Microssatélites/genética , Pistacia/genética , Análise de Sequência de RNA
6.
Plant Divers ; 43(2): 152-162, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33997548

RESUMO

Stress-associated proteins (SAPs) are known as response factors to multiple abiotic and biotic stresses in plants. However, the potential physiological and molecular functions of SAPs remain largely unclear. Castor bean (Ricinus communis L.) is one of the most economically valuable non-edible woody oilseed crops, able to be widely cultivated in marginal lands worldwide because of its broad adaptive capacity to soil and climate conditions. Whether SAPs in castor bean plays a key role in adapting diverse soil conditions and stresses remains unknown. In this study, we used the castor bean genome to identify and characterize nine castor bean SAP genes (RcSAP). Structural analysis showed that castor bean SAP gene structures and functional domain types vary greatly, differing in intron number, protein sequence, and functional domain type. Notably, the AN1-C2H2-C2H2 zinc finger domain within RcSAP9 has not been often observed in other plant families. High throughput RNA-seq data showed that castor bean SAP gene profiles varied among different tissues. In addition, castor bean SAP gene expression varied in response to different stresses, including salt, drought, heat, cold and ABA and MeJA, suggesting that the transcriptional regulation of castor bean SAP genes might operate independently of each other, and at least partially independent from ABA and MeJA signal pathways. Cis-element analyses for each castor bean SAP gene showed that no common cis-elements are shared across the nine castor bean SAP genes. Castor bean SAPs were localized to different regions of cells, including the cytoplasm, nucleus, and cytomembrane. This study provides a comprehensive profile of castor bean SAP genes that advances our understanding of their potential physiological and molecular functions in regulating growth and development and their responses to different abiotic stresses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...