Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Haptics ; PP2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747855

RESUMO

This paper investigates the relationship between fine motor skill training in VR, haptic feedback, and physiological arousal. To do so, we present the design and development of a motor skill task (buzzwire), along with a custom vibrotactile feedback attachment for the Geomagic Touch haptic device. A controlled experiment following a between-subjects design was conducted with 73 participants, studying the role of three feedback conditions - visual/kinesthetic, visual/vibrotactile and visual only - on the learning and performance of the considered task and the arousal levels of the participants. Results indicate that performance improved in all three feedback conditions after the considered training session. However, participants reported no change in self-efficacy and in terms of presence and task load (NASA-TLX). All three feedback conditions also showed similar arousal levels. Further analysis revealed that positive changes in performance were linked to higher arousal levels. These results suggest the potential of haptic feedback to affect arousal levels and encourage further research into using this relationship to improve motor skill training in VR.

2.
IEEE Trans Haptics ; PP2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37307180

RESUMO

This paper presents a 4-degrees-of-freedom (4-DoF) hand wearable haptic device for Virtual Reality (VR). It is designed to support different end-effectors, that can be easily exchanged so as to provide a wide range of haptic sensations. The device is composed of a static upper body, secured to the back of the hand, and the (changeable) end-effector, placed in contact with the palm. The two parts of the device are connected by two articulated arms, actuated by four servo motors housed on the upper body and along the arms. The paper summarizes the design and kinematics of the wearable haptic device and presents a position control scheme able to actuate a broad range of end-effectors. As a proof of concept, we present and evaluate three representative end-effectors during interactions in VR, rendering the sensation of interacting (E1) with rigid slanted surfaces and sharp edges having different orientations, (E2) with curved surfaces having different curvatures, and (E3) with soft surfaces having different stiffness characteristics. A few additional end-effector designs are discussed. A human-subjects evaluation in immersive VR shows the broad applicability of the device, able to render rich interactions with a diverse set of virtual objects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA