Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2306863, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39252446

RESUMO

Microglia are critically involved in post-stroke inflammation affecting neurological outcomes. Lipid droplet (LD) accumulation in microglia results in a dysfunctional and pro-inflammatory state in the aged brain and worsens the outcome of neuroinflammatory and neurodegenerative diseases. However, the role of LD-rich microglia (LDRM) under stroke conditions is unknown. Using in vitro and in vivo stroke models, herein accumulation patterns of microglial LD and their corresponding microglial inflammatory signaling cascades are studied. Interactions between temporal and spatial dynamics of lipid profiles and microglial phenotypes in different post-stroke brain regions are found. Hence, microglia display enhanced levels of LD accumulation and elevated perilipin 2 (PLIN2) expression patterns when exposed to hypoxia or stroke. Such LDRM exhibit high levels of TNF-α, IL-6, and IL-1ß as well as a pro-inflammatory phenotype and differentially expressed lipid metabolism-related genes. These post-ischemic alterations result in distinct lipid profiles with spatial and temporal dynamics, especially with regard to cholesteryl ester and triacylglycerol levels, further exacerbating post-ischemic inflammation. The present study sheds new light on the dynamic changes of brain lipid profiles and aggregation patterns of LD in microglia exposed to ischemia, demonstrating a mutual mechanism between microglial phenotype and function, which contributes to progression of brain injury.

2.
NPJ Parkinsons Dis ; 10(1): 129, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38961119

RESUMO

The seeding amplification assay (SAA) has recently emerged as a valuable tool for detecting α-synuclein (αSyn) aggregates in various clinically accessible biospecimens. Despite its efficiency and specificity, optimal tissue-specific conditions for distinguishing Parkinson's disease (PD) from non-PD outside the brain remain underexplored. This study systematically evaluated 150 reaction conditions to identify the one with the highest discriminatory potential between PD and non-synucleinopathy controls using skin samples, resulting in a modified SAA. The streamlined SAA achieved an overall sensitivity of 92.46% and specificity of 93.33% on biopsy skin samples from 332 PD patients and 285 controls within 24 h. Inter-laboratory reproducibility demonstrated a Cohen's kappa value of 0.87 (95% CI 0.69-1.00), indicating nearly perfect agreement. Additionally, αSyn seeds in the skin were stable at -80 °C but were vulnerable to short-term exposure to non-ultra-low temperatures and grinding. This study thoroughly investigated procedures for sample preprocessing, seed amplification, and storage, introducing a well-structured experimental framework for PD diagnosis using skin samples.

3.
Transl Neurodegener ; 13(1): 35, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39049095

RESUMO

BACKGROUND: Seed amplification assays (SAA) enable the amplification of pathological misfolded proteins, including α-synuclein (αSyn), in both tissue homogenates and body fluids of Parkinson's disease (PD) patients. SAA involves repeated cycles of shaking or sonication coupled with incubation periods. However, this amplification scheme has limitations in tracking protein propagation due to repeated fragmentation. METHODS: We introduced a modified form of SAA, known as Quiescent SAA (QSAA), and evaluated biopsy and autopsy samples from individuals clinically diagnosed with PD and those without synucleinopathies (control group). Brain biopsy samples were obtained from 14 PD patients and 6 controls without synucleinopathies. Additionally, skin samples were collected from 214 PD patients and 208 control subjects. Data were analyzed from April 2019 to May 2023. RESULTS: QSAA successfully amplified αSyn aggregates in brain tissue sections from mice inoculated with pre-formed fibrils. In the skin samples from 214 PD cases and 208 non-PD cases, QSAA demonstrated high sensitivity (90.2%) and specificity (91.4%) in differentiating between PD and non-PD cases. Notably, more αSyn aggregates were detected by QSAA compared to immunofluorescence with the pS129-αSyn antibody in consecutive slices of both brain and skin samples. CONCLUSION: We introduced the new QSAA method tailored for in situ amplification of αSyn aggregates in brain and skin samples while maintaining tissue integrity, providing a streamlined approach to diagnosing PD with individual variability. The integration of seeding activities with the location of deposition of αSyn seeds advances our understanding of the mechanism underlying αSyn misfolding in PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Doença de Parkinson/diagnóstico , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Humanos , Animais , Camundongos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Encéfalo/metabolismo , Encéfalo/patologia , Sensibilidade e Especificidade , Pele/metabolismo , Pele/patologia , Idoso de 80 Anos ou mais
4.
Curr Pharm Des ; 29(30): 2426-2437, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37859325

RESUMO

BACKGROUND: The overexpression, accumulation, and cell-to-cell transmission of α-synuclein leads to the deterioration of Parkinson's disease (PD). Previous studies suggest that Baicalein (BAI) can bind to α-synuclein and inhibit α-synuclein aggregation and secretion. However, it is still unclear whether BAI can intervene with the pathogenic molecules in α-synuclein-mediated PD pathways beyond directly targeting α-synuclein per se. METHODS: This study aimed to systematically investigate BAI's potential targets in PD-related A53T mutant α-synuclein-mediated pathways by integrating data mining, network pharmacological analysis, and molecular docking simulation techniques. RESULTS: The results suggest that BAI may target genes that are dysregulated in synaptic transmission, vesicle trafficking, gene transcription, protein binding, extracellular matrix formation, and kinase activity in α-synucleinmediated pathways. NFKB1, STAT3, and CDKN1A are BAI's potential hub targets in these pathways. CONCLUSION: Our findings highlight BAI's potentiality to modulate α-synuclein-mediated pathways beyond directly targeting α-synuclein per se.


Assuntos
Flavanonas , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Simulação de Acoplamento Molecular , Flavanonas/farmacologia , Subunidade p50 de NF-kappa B/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fator de Transcrição STAT3/metabolismo
5.
Arterioscler Thromb Vasc Biol ; 41(3): 1127-1145, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33327747

RESUMO

OBJECTIVE: Extracellular vesicles (EVs) derived from neural progenitor cells enhance poststroke neurological recovery, albeit the underlying mechanisms remain elusive. Since previous research described an enhanced poststroke integrity of the blood-brain barrier (BBB) upon systemic transplantation of neural progenitor cells, we examined if neural progenitor cell-derived EVs affect BBB integrity and which cellular mechanisms are involved in the process. Approach and Results: Using in vitro models of primary brain endothelial cell (EC) cultures as well as co-cultures of brain ECs (ECs) and astrocytes exposed to oxygen glucose deprivation, we examined the effects of EVs or vehicle on microvascular integrity. In vitro data were confirmed using a mouse transient middle cerebral artery occlusion model. Cultured ECs displayed increased ABCB1 (ATP-binding cassette transporter B1) levels when exposed to oxygen glucose deprivation, which was reversed by treatment with EVs. The latter was due to an EV-induced inhibition of the NF-κB (nuclear factor-κB) pathway. Using a BBB co-culture model of ECs and astrocytes exposed to oxygen glucose deprivation, EVs stabilized the BBB and ABCB1 levels without affecting the transcellular electrical resistance of ECs. Likewise, EVs yielded reduced Evans blue extravasation, decreased ABCB1 expression as well as an inhibition of the NF-κB pathway, and downstream matrix metalloproteinase 9 (MMP-9) activity in stroke mice. The EV-induced inhibition of the NF-κB pathway resulted in a poststroke modulation of immune responses. CONCLUSIONS: Our findings suggest that EVs enhance poststroke BBB integrity via ABCB1 and MMP-9 regulation, attenuating inflammatory cell recruitment by inhibition of the NF-κB pathway. Graphic Abstract: A graphic abstract is available for this article.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Barreira Hematoencefálica/fisiologia , NF-kappa B/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Sobrevivência Celular , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Vesículas Extracelulares/metabolismo , Glucose/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Oxigênio/metabolismo , Acidente Vascular Cerebral/patologia , Fator de Transcrição RelA/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
6.
Stem Cells Transl Med ; 10(3): 357-373, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33146943

RESUMO

Lithium is neuroprotective in preclinical stroke models. In addition to that, poststroke neuroregeneration is stimulated upon transplantation of mesenchymal stem cells (MSCs). Preconditioning of MSCs with lithium further enhances the neuroregenerative potential of MSCs, which act by secreting extracellular vesicles (EVs). The present work analyzed whether MSC preconditioning with lithium modifies EV secretion patterns, enhancing the therapeutic potential of such derived EVs (Li-EVs) in comparison with EVs enriched from native MSCs. Indeed, Li-EVs significantly enhanced the resistance of cultured astrocytes, microglia, and neurons against hypoxic injury when compared with controls and to native EV-treated cells. Using a stroke mouse model, intravenous delivery of Li-EVs increased neurological recovery and neuroregeneration for as long as 3 months in comparison with controls and EV-treated mice, albeit the latter also showed significantly better behavioral test performance compared with controls. Preconditioning of MSCs with lithium also changed the secretion patterns for such EVs, modifying the contents of various miRNAs within these vesicles. As such, Li-EVs displayed significantly increased levels of miR-1906, which has been shown to be a new regulator of toll-like receptor 4 (TLR4) signaling. Li-EVs reduced posthypoxic and postischemic TLR4 abundance, resulting in an inhibition of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling pathway, decreased proteasomal activity, and declined both inducible NO synthase and cyclooxygenase-2 expression, all of which culminated in reduced levels of poststroke cerebral inflammation. Conclusively, the present study demonstrates, for the first time, an enhanced therapeutic potential of Li-EVs compared with native EVs, interfering with a novel signaling pathway that yields both acute neuroprotection and enhanced neurological recovery.


Assuntos
Vesículas Extracelulares , Lítio , Células-Tronco Mesenquimais , MicroRNAs , Acidente Vascular Cerebral , Receptor 4 Toll-Like , Animais , Lítio/farmacologia , Camundongos , MicroRNAs/genética , Neuroproteção , Acidente Vascular Cerebral/terapia , Receptor 4 Toll-Like/genética
7.
J Extracell Vesicles ; 10(1): e12024, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33304476

RESUMO

Grafted mesenchymal stem cells (MSCs) yield neuroprotection in preclinical stroke models by secreting extracellular vesicles (EVs). The neuroprotective cargo of EVs, however, has not yet been identified. To investigate such cargo and its underlying mechanism, primary neurons were exposed to oxygen-glucose-deprivation (OGD) and cocultured with adipose-derived MSCs (ADMSCs) or ADMSC-secreted EVs. Under such conditions, both ADMSCs and ADMSC-secreted EVs significantly reduced neuronal death. Screening for signalling cascades being involved in the interaction between ADMSCs and neurons revealed a decreased autophagic flux as well as a declined p53-BNIP3 activity in neurons receiving either treatment paradigm. However, the aforementioned effects were reversed when ADMSCs were pretreated with the inhibitor of exosomal secretion GW4869 or when Hrs was knocked down. In light of miR-25-3p being the most highly expressed miRNA in ADMSC-EVs interacting with the p53 pathway, further in vitro work focused on this pathway. Indeed, a miR-25-3p oligonucleotide mimic reduced cell death, whereas the anti-oligonucleotide increased autophagic flux and cell death by modulating p53-BNIP3 signalling in primary neurons exposed to OGD. Likewise, native ADMSC-EVs but not EVs obtained from ADMSCs pretreated with the anti-miR-25-3p oligonucleotide (ADMSC-EVsanti-miR-25-3p) confirmed the aforementioned in vitro observations in C57BL/6 mice exposed to cerebral ischemia. The infarct size was reduced, and neurological recovery was increased in mice treated with native ADMSC-EVs when compared to ADMSC-EVsanti-miR-25-3p. ADMSCs induce neuroprotection by improved autophagic flux through secreted EVs containing miR-25-3p. Hence, our work uncovers a novel key factor in naturally secreted ADMSC-EVs for the regulation of autophagy and induction of neuroprotection in a preclinical stroke model.


Assuntos
Tecido Adiposo/metabolismo , Autofagia , MicroRNA Circulante/metabolismo , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Acidente Vascular Cerebral/metabolismo , Tecido Adiposo/patologia , Animais , Modelos Animais de Doenças , Vesículas Extracelulares/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Acidente Vascular Cerebral/patologia
8.
BMC Genet ; 17(1): 111, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27473590

RESUMO

BACKGROUND: mRNA expression in a cell or subcellular organelle is precisely regulated for the purpose of gene function regulation. The 3' untranslated region (3'UTR) of mRNA is the binding target of microRNA and RNA binding proteins. Their interactions regulate mRNA level in specific subcellular regions and determine the intensity of gene repression. The mutations in the coding region of voltage-gated sodium channel alpha 1 subunit gene, SCN1A, were identified in epileptic patients and confirmed as causative factors of epilepsy. We investigated if there were genetic variants in 3'UTR of SCN1A, affecting the microRNA-mRNA 3'UTR interaction and SCN1A gene repression, potentially associated with epilepsy. RESULTS: In this case-control study, we identified twelve variants, NM_001202435.1:n.6277A > G, n.6568_6571del, n.6761C > T, n.6874A > T, n.6907 T > C, n.6978A > G, n.7065_7066insG, n.7282 T > C, n.7338_7344del, n.7385 T > A, n.7996C > T, and n.8212C > T in 3'UTR of SCN1A gene. We found that the variant of n.6978A > G in all our samples was completely mutated (G/G). In male group, T allele in n.7282 T > C was associated with epilepsy, while C allele was significantly less frequent in epileptic patients than in normal males (OR 0.424). Consequently, the haplotype "CTTACATGACGA" / "CTCTA" was significantly less frequent in male epileptic patients (0.173) than in normal males (0.305). The frequency of haplotype block found in females, "TTTAACA", "TTCAACA", and "CTTAACA" was 0.499, 0.254 and 0.234 respectively. Within STarMir model analysis, the "CTCTA" haplotype showed significantly higher site accessibility to microRNA targeting and higher downstream sequence accessibility for nonconserved binding than that of other haplotypes. Overall, the male genotypes have the higher accessibility of the downstream 30nt block of nonconserved site than the female genotypes. CONCLUSIONS: NM_001202435.1:n.7282 T > C is the genetic variant associated with epilepsy in males, and the related haplotype "CTTACATGACGA" / "CTCTA" in the region of chr2: 165991297-165989081, which has high site accessibility for microRNA binding, is the genetic protective factor against epilepsy in males. In female subset, the frequencies of haplotype block "TTTAACA", "TTCAACA", and "CTTAACA" were 0.499,0.254 and 0.234 respectively. Alleles and haplotypes distribution did not differ in female cases in comparison to female controls.


Assuntos
Regiões 3' não Traduzidas/genética , Epilepsia/genética , MicroRNAs/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Sequência de Bases , Estudos de Casos e Controles , Criança , Feminino , Haplótipos , Humanos , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA