Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 459, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212303

RESUMO

The magnetic exchange coupling between magnetic impurities and a superconductor induce so-called Yu-Shiba-Rusinov (YSR) states which undergo a quantum phase transition (QPT) upon increasing the exchange interaction beyond a critical value. While the evolution through the QPT is readily observable, in particular if the YSR state features an electron-hole asymmetry, the concomitant change in the ground state is more difficult to identify. We use ultralow temperature scanning tunneling microscopy to demonstrate how the change in the YSR ground state across the QPT can be directly observed for a spin-1/2 impurity in a magnetic field. The excitation spectrum changes from featuring two peaks in the doublet (free spin) state to four peaks in the singlet (screened spin) ground state. We also identify a transition regime, where the YSR excitation energy is smaller than the Zeeman energy. We thus demonstrate a straightforward way for unambiguously identifying the ground state of a spin-1/2 YSR state.

2.
Nat Commun ; 14(1): 6794, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37880208

RESUMO

Magnetic impurities on superconductors lead to bound states within the superconducting gap, so called Yu-Shiba-Rusinov (YSR) states. They are parity protected, which enhances their lifetime, but makes it more difficult to excite them. Here, we realize the excitation of YSR states by microwaves facilitated by the tunnel coupling to another superconducting electrode in a scanning tunneling microscope (STM). We identify the excitation process through a family of anomalous microwave-assisted tunneling peaks originating from a second-order resonant Andreev process, in which the microwave excites the YSR state triggering a tunneling event transferring a total of two charges. We vary the amplitude and the frequency of the microwave to identify the energy threshold and the evolution of this excitation process. Our work sets an experimental basis and proof-of-principle for the manipulation of YSR states using microwaves with an outlook towards YSR qubits.

3.
Phys Rev Lett ; 124(15): 156803, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357030

RESUMO

Quantum fluctuations are imprinted with valuable information about transport processes. Experimental access to this information is possible, but challenging. We introduce the dynamical Coulomb blockade (DCB) as a local probe for fluctuations in a scanning tunneling microscope (STM) and show that it provides information about the conduction channels. In agreement with theoretical predictions, we find that the DCB disappears in a single-channel junction with increasing transmission following the Fano factor, analogous to what happens with shot noise. Furthermore we demonstrate local differences in the DCB expected from changes in the conduction channel configuration. Our experimental results are complemented by ab initio transport calculations that elucidate the microscopic nature of the conduction channels in our atomic-scale contacts. We conclude that probing the DCB by STM provides a technique complementary to shot noise measurements for locally resolving quantum transport characteristics.

4.
Phys Rev Lett ; 111(24): 247002, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24483693

RESUMO

Motivated by recent experiments on superconducting circuits consisting of a dc-voltage-biased Josephson junction in series with a resonator, quantum properties of these devices far from equilibrium are studied. This includes a crossover from a domain of incoherent to a domain of coherent Cooper pair tunneling, where the circuit realizes a driven nonlinear oscillator. Equivalently, weak photon-charge coupling turns into strong correlations captured by a single degree of freedom. Radiated photons offer a new tool to monitor charge flow and current noise gives access to nonlinear dynamics, which allows us to analyze quantum-classical boundaries.

5.
Phys Rev Lett ; 107(4): 043603, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21867004

RESUMO

Optomechanical systems couple light stored inside an optical cavity to the motion of a mechanical mode. Recent experiments have demonstrated setups, such as photonic crystal structures, that in principle allow one to confine several optical and vibrational modes on a single chip. Here we start to investigate the collective nonlinear dynamics in arrays of coupled optomechanical cells. We show that such "optomechanical arrays" can display synchronization, and that they can be described by an effective Kuramoto-type model.

6.
Phys Rev Lett ; 100(6): 066801, 2008 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-18352503

RESUMO

We study the influence of Coulomb interaction on the thermoelectric transport coefficients for a metallic single-electron transistor. By performing a perturbation expansion up to second order in the tunnel-barrier conductance, we include sequential and cotunneling processes as well as quantum fluctuations that renormalize the charging energy and the tunnel conductance. We find that Coulomb interaction leads to a strong violation of the Wiedemann-Franz law: the Lorenz ratio becomes gate-voltage dependent for sequential tunneling, and is increased by a factor 9/5 in the cotunneling regime. Finally, we suggest a measurement scheme for an experimental realization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...