Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cryst Growth Des ; 23(11): 8290-8295, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37937192

RESUMO

Heteroepitaxial growth of ß-Ga2O3 on (001) diamond by metal-organic chemical vapor deposition (MOCVD) is reported. A detailed study was performed with Transmission Electron Microscopy (TEM) elucidating the epitaxial relation of (-201) ß-Ga2O3||(001) diamond and [010]/[-13-2] ß-Ga2O3 ||[110]/[1-10] diamond, with the presence of different crystallographically related epitaxial variants apparent from selected area diffraction patterns. A model explaining the arrangement of atoms along ⟨110⟩ diamond is demonstrated with a lattice mismatch of 1.03-3.66% in the perpendicular direction. Dark field imaging showed evidence of arrays of discrete defects at the boundaries between different grains. Strategies to reduce the density of defects are discussed.

2.
ACS Appl Electron Mater ; 5(9): 5017-5024, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37779888

RESUMO

High thermal conductivity and an appropriate coefficient of thermal expansion are the key features of a perfect heat spreader for electronic device packaging, especially for applications with increased power density and the increasing demand for higher reliability and semiconductor device performance. For the past decade, metal-diamond composites have been thoroughly studied as a heat spreader, thanks to their high thermal conductivities and tailored coefficients of thermal expansion. While existing thermal characterization methods are good for quality control purposes, a more accurate method is needed to determine detailed thermal properties of these composite materials, especially if clad with metal. Low-frequency-range-domain thermoreflectance has been adopted to measure the thermal conductivity of a metal-diamond composite sandwiched between metal cladding layers. Due to this technique's low modulation frequencies, from 10 Hz to 10 kHz, multiple layers can be probed and measured at depths ranging from tens of micrometers to a few millimeters.

3.
Sci Rep ; 13(1): 3437, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859432

RESUMO

Heterostructures of Ga[Formula: see text]O[Formula: see text] with other materials such as Si, SiC or diamond, are a possible way of addressing the low thermal conductivity and lack of p-type doping of Ga[Formula: see text]O[Formula: see text] for device applications, as well as of improving device reliability. In this work we study the electrical and thermal properties of Ga[Formula: see text]O[Formula: see text]-SiO[Formula: see text] heterostructures. Here, thin-film gallium oxide with thickness ranging between 8 and 30 nm was deposited onto a silicon substrate with a thermal oxide by means of oxidised liquid gallium layer delamination. The resulting heterostructure is then characterised by means of X-ray photoelectron spectroscopy and transient thermoreflectance. The thin-film gallium oxide valence band offset with respect to the SiO[Formula: see text] is measured as 0.1 eV and predicted as [Formula: see text] eV with respect to diamond. The thin-film's out-of-plane thermal conductivity is determined to be 3 ±0.5 Wm[Formula: see text] K[Formula: see text], which is higher than what has been previously measured for other polycrystalline Ga[Formula: see text]O[Formula: see text] films of comparable thickness.

4.
ACS Appl Electron Mater ; 4(4): 1558-1566, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35573030

RESUMO

High-performance, high-reliability microelectronic devices are essential for many applications. Thermal management is required to ensure that the temperature of semiconductor devices remains in a safe operating range. Advanced materials, such as silver-sintered die attach (the bond layer between the semiconductor die and the heat sink) and metal-diamond composite heat sinks, are being developed for this purpose. These are typically multilayered structures, with individual layer thicknesses ranging from tens of micrometers to millimeters. The effective thermal conductivity of individual layers likely differs from their bulk values due to interface effects and potential material imperfections. A method is needed to characterize the thermal resistance of these structures at the design optimization stage to understand what effect non-idealities may have on the final packaged device temperature. We have adapted the frequency-domain thermoreflectance technique to measure at low frequencies, from 10 Hz to 10 kHz, enabling multiple layers to be probed at depths from tens of micrometers to millimeters, which is tailored to assess novel device packaging and heat sinks. This is demonstrated by measuring the thermal resistance of a sintered silver die attach.

5.
J Phys Chem Lett ; 13(17): 3831-3839, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35467342

RESUMO

The deformation and fracture mechanism of two-dimensional (2D) materials are still unclear and not thoroughly investigated. Given this, mechanical properties and mechanisms are explored on example of gallium telluride (GaTe), a promising 2D semiconductor with an ultrahigh photoresponsivity and a high flexibility. Hereby, the mechanical properties of both substrate-supported and suspended GaTe multilayers were investigated through Berkovich-tip nanoindentation instead of the commonly used AFM-based nanoindentation method. An unusual concurrence of multiple pop-in and load-drop events in loading curve was observed. Theoretical calculations unveiled this concurrence originating from the interlayer-sliding mediated layers-by-layers fracture mechanism in GaTe multilayers. The van der Waals force dominated interlayer interactions between GaTe and substrates was revealed much stronger than that between GaTe interlayers, resulting in the easy sliding and fracture of multilayers within GaTe. This work introduces new insights into the deformation and fracture of GaTe and other 2D materials in flexible electronics applications.

6.
ACS Appl Mater Interfaces ; 13(50): 60553-60560, 2021 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-34875169

RESUMO

The implementation of 5G-and-beyond networks requires faster, high-performance, and power-efficient semiconductor devices, which are only possible with materials that can support higher frequencies. Gallium nitride (GaN) power amplifiers are essential for 5G-and-beyond technologies since they provide the desired combination of high frequency and high power. These applications along with terrestrial hub and backhaul communications at high power output can present severe heat removal challenges. The cooling of GaN devices with diamond as the heat spreader has gained significant momentum since device self-heating limits GaN's performance. However, one of the significant challenges in integrating polycrystalline diamond on GaN devices is maintaining the device performance while achieving a low diamond/GaN channel thermal boundary resistance. In this study, we achieved a record-low thermal boundary resistance of around 3.1 ± 0.7 m2 K/GW at the diamond/Si3N4/GaN interface, which is the closest to theoretical prediction to date. The diamond was integrated within ∼1 nm of the GaN channel layer without degrading the channel's electrical behavior. Furthermore, we successfully minimized the residual stress in the diamond layer, enabling more isotropic polycrystalline diamond growth on GaN with thicknesses >2 µm and a ∼1.9 µm lateral grain size. More isotropic grains can spread the heat in both vertical and lateral directions efficiently. Using transient thermoreflectance, the thermal conductivity of the grains was measured to be 638 ± 48 W/m K, which when combined with the record-low thermal boundary resistance makes it a leading-edge achievement.

7.
ACS Appl Mater Interfaces ; 13(15): 17910-17919, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33844921

RESUMO

The presence of polymer transfer residues on graphene surfaces is a major bottleneck to overcome for the commercial and industrial viability of devices incorporating graphene layers. In particular, how clean the surface must be to recover high (>2500 W/mK) thermal conductivity and maximize the heat spreading capability of graphene for thermal management applications remains unclear. Here, we present the first systematic study of the impact of different levels of polymer residues on the in-plane thermal conductivity (κr) of single-layer graphene (SLG) fabricated by chemical vapor deposition (CVD). Control over the quantity of surface residue was achieved by varying the length of time each sample was rinsed in toluene to remove the poly(methyl methacrylate) (PMMA) support layer. The level of residue contamination was assessed using atomic force microscopy (AFM) and optical characterization. The thermal conductivity of the suspended SLG was measured using an optothermal Raman technique. We observed that the presence of polymer surface residue has a significant impact on the thermal properties of SLG, with the most heavily contaminated sample exhibiting a κr as low as (905 +155/-100) W/mK. Even without complete eradication of surface residues, a thermal conductivity as high as (3100 +1400/-900) W/mK was recovered, where the separation between adjacent clusters was sufficiently large (>700 nm). The proportion of the SLG surface covered by residues and the mean separation distance between clusters were found to be key factors in determining the level of κr suppression. This work has important implications for future large-scale graphene fabrication and transfer, particularly where graphene is to be used as a heat spreading layer in devices. The possibility of new opportunities for manipulation of the thermal properties of SLG via PMMA nanopatterning is also raised.

8.
ACS Appl Mater Interfaces ; 12(48): 54138-54145, 2020 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-33196180

RESUMO

Integrating diamond with GaN high electron mobility transistors (HEMTs) improves thermal management, ultimately increasing the reliability and performance of high-power high-frequency radio frequency amplifiers. Conventionally, an amorphous interlayer is used before growing polycrystalline diamond onto GaN in these devices. This layer contributes significantly to the effective thermal boundary resistance (TBReff) between the GaN HEMT and the diamond, reducing the benefit of the diamond heat spreader. Replacing the amorphous interlayer with a higher thermal conductivity crystalline material would reduce TBReff and help to enable the full potential of GaN-on-diamond devices. In this work, a crystalline Al0.32Ga0.68N interlayer has been integrated into a GaN/AlGaN HEMT device epitaxy. Two samples were studied, one with diamond grown directly on the AlGaN interlayer and another incorporating a thin crystalline SiC layer between AlGaN and diamond. The TBReff, measured using transient thermoreflectance, was improved for the sample with SiC (30 ± 5 m2 K GW-1) compared to the sample without (107 ± 44 m2 K GW-1). The reduced TBReff is thought to arise from improved adhesion between SiC and the diamond compared to the diamond directly on AlGaN because of an increased propensity for carbide bond formation between SiC and the diamond. The stronger carbide bonds aid transmission of phonons across the interface, improving heat transport.

9.
ACS Appl Mater Interfaces ; 12(23): 26534-26542, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32463648

RESUMO

Thermionic emission relies on the low work function and negative electron affinity of the, often functionalized, surface of the emitting material. However, there is little understanding of the interplay between thermionic emission and temperature-driven dynamic surface transformation processes as these are not represented on the traditional Richardson-Dushman equation for thermionic emission. Here, we show a new model for thermionic emission that can reproduce the effect of dynamic surface changes on the electron emission and correlate the components of the thermionic emission with specific surface reconstruction phases on the surface of the emitter. We use hydrogenated <100> single-crystal and polycrystalline diamonds as thermionic emitters to validate our model, which shows excellent agreement with the experimental data and could be applicable to other emitting materials. Furthermore, we find that tailoring the coverage of specific structures of the C(100)-(2 × 1):H surface reconstruction could increase the thermionic emission of diamond by several orders of magnitude.

10.
Nanotechnology ; 31(16): 165706, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-31891923

RESUMO

Freestanding indentation is a widely used method to characterise the elastic properties of two-dimensional (2D) materials. However, many controversies and confusion remain in this field due to the lack of appropriate theoretical models in describing the indentation responses of 2D materials. Taking the multilayer gallium telluride (GaTe) as an example, in this paper we conduct a series of experiments and simulations to achieve a comprehensive understanding of its freestanding indentation behaviours. Specifically, the freestanding indentation experiments show that the elastic properties of the present multilayer GaTe with a relatively large thickness can only be extracted from the bending stage in the indentation process rather than the stretching stage widely utilised in the previous studies on thin 2D materials, since the stretching stage of thick 2D materials is inevitably accompanied with severe plastic deformations. In combination with existing continuum mechanical models and finite element simulations, an extremely small Young's modulus of multilayer GaTe is obtained from the nanoindentation experiments, which is two orders of magnitude smaller than the value obtained from first principles calculations. Our molecular dynamics (MD) simulations reveal that this small Young's modulus can be attributed to the significant elastic softening in the multilayer GaTe with increasing thickness and decreasing length. It is further revealed in MD simulations that this size-induced elastic softening originates from the synergistic effects of interlayer compression and interlayer shearing in the multilayer GaTe, both of which, however, are ignored in the existing indentation models. To consider these effects of interlayer interactions in the theoretical modelling of the freestanding indentation of multilayer GaTe, we propose here novel multiple-beam and multiple-plate models, which are found to agree well with MD results without any additional parameters fitting and thus can be treated as more precise theoretical models in characterising the freestanding indentation behaviours of 2D materials.

11.
Rev Sci Instrum ; 90(11): 114903, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31779394

RESUMO

A method is presented to characterize the anisotropic thermal properties of materials based on nanosecond transient thermoreflectance (TTR). An analytical heat transfer model is derived for the TTR signal, showing that the signal is sensitive to out-of-plane and in-plane heat conductions at distinct time scales. This sensitivity feature can be exploited to simultaneously determine the out-of-plane and in-plane thermal conductivities. Examples are given for molybdenum disulphide, hexagonal boron nitride, and highly oriented pyrolytic graphite to assess the validity of this method.

12.
ACS Omega ; 4(19): 18002-18010, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720504

RESUMO

Layered semiconductor gallium telluride (GaTe) undergoes a rapid structural transition to a degraded phase in ambient conditions, limiting its utility in devices such as optical switches. In this work, we demonstrate that the degradation process in GaTe flakes can be slowed down dramatically via encapsulation with graphene. Through examining Raman signatures of degradation, we show that the choice of substrate significantly impacts the degradation rate and that the process is accelerated by the transfer of GaTe to hydrophilic substrates such as SiO2/Si. We find that double encapsulation with both top and bottom graphene layers can extend the lifetime of the material for several weeks. The photoresponse of flakes encapsulated in this way is only reduced by 17.6 ± 0.4% after 2 weeks, whereas unencapsulated flakes display no response after this time. Our results demonstrate the potential for alternative, van der Waals material-based passivation strategies in unstable layered materials and highlight the need for careful selection of substrates for 2D electronic devices.

13.
ACS Appl Mater Interfaces ; 11(43): 40826-40834, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31603642

RESUMO

The growth of >100-µm-thick diamond layers adherent on aluminum nitride with low thermal boundary resistance between diamond and AlN is presented in this work. The thermal barrier resistance was found to be in the range of 16 m2·K/GW, which is a large improvement on the current state-of-the-art. While thick films failed to adhere on untreated AlN films, AlN films treated with hydrogen/nitrogen plasma retained the thick diamond layers. Clear differences in ζ-potential measurement confirm surface modification due to hydrogen/nitrogen plasma treatment. An increase in non-diamond carbon in the initial layers of diamond grown on pretreated AlN is seen by Raman spectroscopy. The presence of non-diamond carbon has minimal effect on the thermal barrier resistance. The surfaces studied with X-ray photoelectron spectroscopy revealed a clear distinction between pretreated and untreated samples. The surface aluminum goes from a nitrogen-rich environment to an oxygen-rich environment after pretreatment. A clean interface between diamond and AlN is seen by cross-sectional transmission electron microscopy.

14.
ACS Appl Mater Interfaces ; 10(28): 24302-24309, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29939717

RESUMO

The development of GaN-on-diamond devices holds much promise for the creation of high-power density electronics. Inherent to the growth of these devices, a dielectric layer is placed between the GaN and diamond, which can contribute significantly to the overall thermal resistance of the structure. In this work, we explore the role of different interfaces in contributing to the thermal resistance of the interface of GaN/diamond layers, specifically using 5 nm layers of AlN, SiN, or no interlayer at all. Using time-domain thermoreflectance along with electron energy loss spectroscopy, we were able to determine that a SiN interfacial layer provided the lowest thermal boundary resistance (<10 m2K/GW) because of the formation of an Si-C-N layer at the interface. The AlN and no interlayer samples were observed to have TBRs greater than 20 m2K/GW as a result of a harsh growth environment that roughened the interface (enhancing phonon scattering) when the GaN was not properly protected.

15.
ACS Appl Mater Interfaces ; 9(39): 34416-34422, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28901127

RESUMO

GaN-on-diamond device cooling can be enhanced by reducing the effective thermal boundary resistance (TBReff) of the GaN/diamond interface. The thermal properties of this interface and of the polycrystalline diamond grown onto GaN using SiN and AlN barrier layers as well as without any barrier layer under different growth conditions are investigated and systematically compared for the first time. TBReff values are correlated with transmission electron microscopy analysis, showing that the lowest reported TBReff (∼6.5 m2 K/GW) is obtained by using ultrathin SiN barrier layers with a smooth interface formed, whereas the direct growth of diamond onto GaN results in one to two orders of magnitude higher TBReff due to the formation of a rough interface. AlN barrier layers can produce a TBReff as low as SiN barrier layers in some cases; however, their TBReff are rather dependent on growth conditions. We also observe a decreasing diamond thermal resistance with increasing growth temperature.

16.
Nat Commun ; 8: 15942, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28665405

RESUMO

Nuclear-grade graphite is a critically important high-temperature structural material for current and potentially next generation of fission reactors worldwide. It is imperative to understand its damage-tolerant behaviour and to discern the mechanisms of damage evolution under in-service conditions. Here we perform in situ mechanical testing with synchrotron X-ray computed micro-tomography at temperatures between ambient and 1,000 °C on a nuclear-grade Gilsocarbon graphite. We find that both the strength and fracture toughness of this graphite are improved at elevated temperature. Whereas this behaviour is consistent with observations of the closure of microcracks formed parallel to the covalent-sp2-bonded graphene layers at higher temperatures, which accommodate the more than tenfold larger thermal expansion perpendicular to these layers, we attribute the elevation in strength and toughness primarily to changes in the residual stress state at 800-1,000 °C, specifically to the reduction in significant levels of residual tensile stresses in the graphite that are 'frozen-in' following processing.

17.
ACS Omega ; 2(10): 7275-7280, 2017 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457302

RESUMO

The measurement of ζ potential of Ga-face and N-face gallium nitride has been carried out as a function of pH. Both of the faces show negative ζ potential in the pH range 5.5-9. The Ga-face has an isoelectric point at pH 5.5. The N-face shows a more negative ζ potential due to larger concentration of adsorbed oxygen. The ζ potential data clearly showed that H-terminated diamond seed solution at pH 8 will be optimal for the self-assembly of a monolayer of diamond nanoparticles on the GaN surface. The subsequent growth of thin diamond films on GaN seeded with H-terminated diamond seeds produced fully coalesced films, confirming a seeding density in excess of 1011 cm-2. This technique removes the requirement for a low thermal conduction seeding layer like silicon nitride on GaN.

18.
Spectrochim Acta A Mol Biomol Spectrosc ; 73(2): 263-7, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19345639

RESUMO

Spectroscopic properties of metal complexes of thiourea single crystals (tris thiourea zinc acetate, bis thiourea cadmium zinc acetate and bis thiourea ammonium chloride) which are non-linear optic materials were investigated by Raman scattering spectroscopy. The vibrational frequencies of the functional groups are identified and assigned. Effects due to the coordination of thiourea with metal ions are analyzed. Hydrogen bonding interactions involved in the metal complexes are observed in the Raman spectra.


Assuntos
Metais/química , Análise Espectral Raman/métodos , Tioureia/química , Cristalização , Estrutura Molecular , Difração de Raios X , Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...