Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Nanomedicine ; 19: 3973-3989, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711615

RESUMO

Graphene and graphene-based materials have attracted growing interest for potential applications in medicine because of their good biocompatibility, cargo capability and possible surface functionalizations. In parallel, prototypic graphene-based devices have been developed to diagnose, imaging and track tumor growth in cancer patients. There is a growing number of reports on the use of graphene and its functionalized derivatives in the design of innovative drugs delivery systems, photothermal and photodynamic cancer therapy, and as a platform to combine multiple therapies. The aim of this review is to introduce the latest scientific achievements in the field of innovative composite graphene materials as potentially applied in cancer therapy. The "Technology and Innovation Roadmap" published in the Graphene Flagship indicates, that the first anti-cancer drugs using graphene and graphene-derived materials will have appeared on the market by 2030. However, it is necessary to broaden understanding of graphene-based material interactions with cellular metabolism and signaling at the functional level, as well as toxicity. The main aspects of further research should elucidate how treatment methods (e.g., photothermal therapy, photodynamic therapy, combination therapy) and the physicochemical properties of graphene materials influence their ability to modulate autophagy and kill cancer cells. Interestingly, recent scientific reports also prove that graphene nanocomposites modulate cancer cell death by inducing precise autophagy dysfunctions caused by lysosome damage. It turns out as well that developing photothermal oncological treatments, it should be taken into account that near-infrared-II radiation (1000-1500 nm) is a better option than NIR-I (750-1000 nm) because it can penetrate deeper into tissues due to less scattering at longer wavelengths radiation.


Assuntos
Antineoplásicos , Grafite , Neoplasias , Grafite/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Fotoquimioterapia/métodos , Autofagia/efeitos dos fármacos , Animais , Nanocompostos/química , Nanocompostos/uso terapêutico , Nanomedicina
2.
Drug Des Devel Ther ; 18: 1165-1174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623566

RESUMO

Purpose: Citric acid (CA) is a tricarboxylic acid with antioxidant and antimicrobial properties. Based on previous studies, the small compound with its three carboxylic groups can be considered a protein tyrosine phosphatase inhibitor. YopH, a protein tyrosine phosphatase, is an essential virulence factor in Yersinia bacteria. Materials and Methods: We performed enzymatic activity assays of YopH phosphatase after treatment with citric acid in comparison with the inhibitory compound trimesic acid, which has a similar structure. We also measured the cytotoxicity of these compounds in Jurkat T E6.1 and macrophage J774.2 cell lines. We performed molecular docking analysis of the binding of citric acid molecules to YopH phosphatase. Results: Citric acid and trimesic acid reversibly reduced the activity of YopH enzyme and decreased the viability of Jurkat and macrophage cell lines. Importantly, these two compounds showed greater inhibitory properties against bacterial YopH activity than against human CD45 phosphatase activity. Molecular docking simulations confirmed that citric acid could bind to YopH phosphatase. Conclusion: Citric acid, a known antioxidant, can be considered an inhibitor of bacterial phosphatases.


Assuntos
Antioxidantes , Proteínas Tirosina Fosfatases , Ácidos Tricarboxílicos , Humanos , Simulação de Acoplamento Molecular , Proteínas Tirosina Fosfatases/química , Proteínas Tirosina Fosfatases/metabolismo , Tirosina
3.
Int J Nanomedicine ; 18: 2507-2523, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197025

RESUMO

Introduction: Solid lipid nanoparticles (SLN) have been considered lately as promising drug delivery system in treatment of many human diseases including cancers. We previously studied potential drug compounds that were effective inhibitors of PTP1B phosphatase - possible target for breast cancer treatment. Based on our studies, two complexes were selected for encapsulation into the SLNs, the compound 1 ([VO(dipic)(dmbipy)] · 2 H2O) and compound 2 ([VOO(dipic)](2-phepyH) · H2O). Here, we investigate the effect of encapsulation of those compounds on cell cytotoxicity against MDA-MB-231 breast cancer cell line. The study also included the stability evaluation of the obtained nanocarriers with incorporated active substances and characterization of their lipid matrix. Moreover, the cell cytotoxicity studies against the MDA-MB-231 breast cancer cell line in comparison and in combination with vincristine have been performed. Wound healing assay was carried out to observe cell migration rate. Methods: The properties of the SLNs such as particle size, zeta potential (ZP), and polydispersity index (PDI) were investigated. The morphology of SLNs was observed by scanning electron microscopy (SEM), while the crystallinity of the lipid particles was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The cell cytotoxicity of complexes and their encapsulated forms was carried out against MDA-MB-231 breast cancer cell line using standard MTT protocols. The wound healing assay was performed using live imaging microscopy. Results: SLNs with a mean size of 160 ± 25 nm, a ZP of -34.00 ± 0.5, and a polydispersity index of 30 ± 5% were obtained. Encapsulated forms of compounds showed significantly higher cytotoxicity also in co-incubation with vincristine. Moreover, our research shows that the best compound was complex 2 encapsulated into lipid nanoparticles. Conclusion: We observed that encapsulation of studied complexes into SLNs increases their cell cytotoxicity against MDA-MB-231 cell line and enhanced the effect of vincristine.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Vincristina , Lipídeos/química , Células MDA-MB-231 , Nanopartículas/química , Neoplasias da Mama/tratamento farmacológico , Tamanho da Partícula , Portadores de Fármacos/química
4.
Antioxidants (Basel) ; 11(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36552605

RESUMO

The review is focused on the bacterial protein tyrosine phosphatases (PTPs) utilized by bacteria as virulence factors necessary for pathogenicity. The inhibition of bacterial PTPs could contribute to the arrest of the bacterial infection process. This mechanism could be utilized in the design of antimicrobial therapy as adjuvants to antibiotics. The review summaries knowledge on pathogenic bacterial protein tyrosine phosphatases (PTPs) involved in infection process, such as: PTPA and PTPB from Staphylococcus aureus and Mycobacterium tuberculosis; SptP from Salmonella typhimurium; YopH from Yersinia sp. and TbpA from Pseudomonas aeruginosa. The review focuses also on the potential inhibitory compounds of bacterial virulence factors and inhibitory mechanisms such as the reversible oxidation of tyrosine phosphatases.

5.
Antioxidants (Basel) ; 11(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36290736

RESUMO

Gliomas are the most prevalent primary tumors of the central nervous system (CNS), accounting for over fifty percent of all primary intracranial neoplasms. Glioblastoma (GBM) is the most prevalent form of malignant glioma and is often incurable. The main distinguishing trait of GBM is the presence of hypoxic regions accompanied by enhanced angiogenesis. 2-Methoxyestradiol (2-ME) is a well-established antiangiogenic and antiproliferative drug. In current clinical studies, 2-ME, known as Panzem, was examined for breast, ovarian, prostate, and multiple myeloma. The SW1088 grade III glioma cell line was treated with pharmacological and physiological doses of 2-ME. The induction of apoptosis and necrosis, oxidative stress, cell cycle arrest, and mitochondrial membrane potential were established by flow cytometry. Confocal microscopy was used to detect DNA damage. The Western blot technique determined the level of nitric oxide synthase and heat shock proteins. Here, for the first time, 2-ME is shown to induce nitro-oxidative stress with the concomitant modulation of heat shock proteins (HSPs) in the SW1088 grade III glioma cell line. Crucial therapeutic strategies for GMB should address both cell proliferation and angiogenesis, and due to the above, 2-ME seems to be a perfect candidate for GBM therapy.

6.
Int J Mol Sci ; 23(13)2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35806035

RESUMO

One of the main goals of recent bioinorganic chemistry studies has been to design and synthesize novel substances to treat human diseases. The promising compounds are metal-based and metal ion binding components such as vanadium-based compounds. The potential anticancer action of vanadium-based compounds is one of area of investigation in this field. In this study, we present five oxovanadium(IV) and dioxovanadium(V) complexes as potential PTP1B inhibitors with anticancer activity against the MCF-7 breast cancer cell line, the triple negative MDA-MB-231 breast cancer cell line, and the human keratinocyte HaCaT cell line. We observed that all tested compounds were effective inhibitors of PTP1B, which correlates with anticancer activity. [VO(dipic)(dmbipy)]·2 H2O (Compound 4) and [VOO(dipic)](2-phepyH)·H2O (Compound 5) possessed the greatest inhibitory effect, with IC50 185.4 ± 9.8 and 167.2 ± 8.0 nM, respectively. To obtain a better understanding of the relationship between the structure of the examined compounds and their activity, we performed a computer simulation of their binding inside the active site of PTP1B. We observed a stronger binding of complexes containing dipicolinic acid with PTP1B. Based on our simulations, we suggested that the studied complexes exert their activity by stabilizing the WPD-loop in an open position and limiting access to the P-loop.


Assuntos
Neoplasias da Mama , Compostos Organometálicos , Simulação por Computador , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Feminino , Humanos , Compostos Organometálicos/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Vanádio/química , Vanádio/farmacologia
7.
Redox Biol ; 55: 102395, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841627

RESUMO

Lung cancer is one of the most common cancers worldwide, causing nearly one million deaths each year. Herein, we present the effect of 2-methoxyestradiol (2-ME), the endogenous metabolite of 17ß-estradiol (E2), on non-small cell lung cancer (NSCLC) cells. We observed that 2-ME reduced the viability of lung adenocarcinoma in two-dimensional (2D) and three-dimensional (3D) spheroidal A549 cell culture models. Molecular modeling was carried out aiming to visualize amino acid residues within binding pockets of the acyl-protein thioesterases, namely 1 (APT1) and 2 (APT2), and thus to identify which ones were more likely involved in the interaction with 2-ME. Our findings suggest that 2-ME acts as an APT1 inhibitor enhancing protein palmitoylation and oxidative stress phenomena in the lung cancer cell. In order to support our data, metabolomics of blood serum from NSCLC patients was also performed. Moreover, computational analysis suggests that 2-ME as compared to other estrogen metabolism intermediates is relatively safe in terms of its possible non-receptor bioactivity within healthy human cells due to a very low electrophilic potential and hence no substantial risk of spontaneous covalent modification of biologically protective nucleophiles. We propose that 2-ME can be used as a selective tumor biomarker in the course of certain types of lung cancers and possibly as a therapeutic adjuvant or neoadjuvant.

8.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638706

RESUMO

Breast cancer is the most common cancer of women-it affects more than 2 million women worldwide. PTP1B phosphatase can be one of the possible targets for new drugs in breast cancer therapy. In this paper, we present new curcumin derivatives featuring a 4-piperidone ring as PTP1B inhibitors and ROS inducers. We performed cytotoxicity analysis for twelve curcumin derivatives against breast cancer MCF-7 and MDA-MB-231 cell lines and the human keratinocyte HaCaT cell line. Furthermore, because curcumin is a known antioxidant, we assessed antioxidant effects in its derivatives. For the most potent cytotoxic compounds, we determined intracellular ROS and PTP1B phosphatase levels. Moreover, for curcumin and its derivatives, we performed real-time microscopy to observe the photosensitizing effect. Finally, computational analysis was performed for the curcumin derivatives with an inhibitory effect against PTP1B phosphatase to assess the potential binding mode of new inhibitors within the allosteric site of the enzyme. We observed that two tested compounds are better anticancer agents than curcumin. Moreover, we suggest that blocking the -OH group in phenolic compounds causes an increase in the cytotoxicity effect, even at a low concentration. Furthermore, due to this modification, a higher level of ROS is induced, which correlates with a lower level of PTP1B.


Assuntos
Neoplasias da Mama , Curcumina , Citotoxinas/farmacologia , Proteínas de Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Proteólise/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Feminino , Humanos , Células MCF-7
9.
Antioxidants (Basel) ; 10(2)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33562035

RESUMO

Mitochondria, as "power house of the cell", are crucial players in cell pathophysiology. Beyond adenosine triphosphate (ATP) production, they take part in a generation of reactive oxygen species (ROS), regulation of cell signaling and cell death. Dysregulation of mitochondrial dynamics may lead to cancers and neurodegeneration; however, the fusion/fission cycle allows mitochondria to adapt to metabolic needs of the cell. There are multiple data suggesting that disturbed mitochondrial homeostasis can lead to Parkinson's disease (PD) development. 2-methoxyestradiol (2-ME), metabolite of 17ß-estradiol (E2) and potential anticancer agent, was demonstrated to inhibit cell growth of hippocampal HT22 cells by means of nitric oxide synthase (NOS) production and oxidative stress at both pharmacologically and also physiologically relevant concentrations. Moreover, 2-ME was suggested to inhibit mitochondrial biogenesis and to be a dynamic regulator. This review is a comprehensive discussion, from both scientific and clinical point of view, about the influence of 2-ME on mitochondria and its plausible role as a modulator of neuron survival.

10.
Sci Rep ; 11(1): 1616, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452331

RESUMO

Osteosarcoma (OS) is one of the most malignant tumors of childhood and adolescence. Research on mitochondrial dynamics (fusion/fission) and biogenesis has received much attention in last few years, as they are crucial for death of cancer cells. Specifically, it was shown that increased expression of the cytoplasmic dynamin-related protein 1 (Drp1) triggers mitochondrial fission (division), which activates BAX and downstream intrinsic apoptosis, effectively inhibiting OS growth. In the presented study, human OS cells (metastatic 143B OS cell line) were incubated with 2-methoxyestradiol (2-ME) at both physiologically and pharmacologically relevant concentrations. Cell viability was determined by the MTT assay. Confocal microscopy and western blot methods were applied to examine changes in Drp1 and BAX protein levels. Mitochondrial Division Inhibitor 1, MDIVI-1, was used in the study to further examine the role of Drp1 in 2-ME-mediated mechanism of action. To determine quantitative and qualitative changes in mitochondria, electron microscopy was used. 2-ME at all used concentrations increased mitochondrial fission and induced autophagy in OS cells. At the concentration of 1 µM 2-ME increased the area density of mitochondria in OS cells. Subsequent, upregulated expression of Drp1 and BAX proteins by 2-ME strongly suggests the activation of the intrinsic apoptosis pathway. We further observed 2-ME-mediated regulation of glycolytic state of OS cells. Therefore, we suggest that changes of mitochondrial dynamics may represent a novel mechanism of anticancer action of 2-ME. This finding may open new approaches to improve the efficacy of chemotherapy in the treatment of OS, however, it has to be confirmed by in vivo studies.


Assuntos
2-Metoxiestradiol/farmacologia , Apoptose/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dinaminas/metabolismo , Humanos , Microscopia Eletrônica , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Quinazolinonas/farmacologia , Regulação para Cima/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-33466597

RESUMO

Malignant neoplasms are among the most common diseases and are responsible for the majority of deaths in the developed world. In contrast to men, available data show a clear upward trend in the incidence of lung cancer in women, making it almost as prevalent as breast cancer. Women might be more susceptible to the carcinogenic effect of tobacco smoke than men. Furthermore, available data indicate a much more frequent mutation of the tumor suppressor gene-p53 in non-small cell lung cancer (NSCLC) female patients compared to males. Another important factor, however, might lie in the female sex hormones, whose mitogenic or carcinogenic effect is well known. Epidemiologic data show a correlation between hormone replacement therapy (HRT) or oral contraceptives (OCs), and increased mortality rates due to the increased incidence of malignant tumors, including lung cancer. Interestingly, two types of estrogen receptors have been detected in lung cancer cells: ERα and ERß. The presence of ERα has been detected in tissues and non-small-cell lung carcinoma (NSCLC) cell lines. In contrast, overexpression of ERß is a prognostic marker in NSCLC. Herein, we summarize the current knowledge on the role of estrogens in the etiopathogenesis of lung cancer, as well as biological, hormonal and genetic sex-related differences in this neoplasm.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptor alfa de Estrogênio/genética , Receptor beta de Estrogênio , Estrogênios , Feminino , Humanos , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/epidemiologia , Masculino , Receptores de Estrogênio
12.
Antioxidants (Basel) ; 9(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266280

RESUMO

The catechins derived from green tea possess antioxidant activity and may have a potentially anticancer effect. PTP1B is tyrosine phosphatase that is oxidative stress regulated and is involved with prooncogenic pathways leading to the formation of a.o. breast cancer. Here, we present the effect of selected green tea catechins on enzymatic activity of PTP1B phosphatase and viability of MCF-7 breast cancer cells. We showed also the computational analysis of the most effective catechin binding with a PTP1B molecule. We observed that epigallocatechin, epigallocatechin gallate, epicatechin, and epicatechin gallate may decrease enzymatic activity of PTP1B phosphatase and viability of MCF-7 cells. Conclusions: From the tested compounds, epigallocatechin and epigallocatechin gallate were the most effective inhibitors of the MCF-7 cell viability. Moreover, epigallocatechin was also the strongest inhibitor of PTP1B activity. Computational analysis allows us also to conclude that epigallocatechin is able to interact and bind to PTP1B. Our results suggest also the most predicted binding site to epigallocatechin binding to PTP1B.

13.
Redox Biol ; 32: 101522, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32305006

RESUMO

2-methoxyestradiol (2-ME) is a physiological anticancer compound, metabolite of 17ß-estradiol. Previously, our group evidenced that from mechanistic point of view one of anticancer mechanisms of action of 2-ME is specific induction and nuclear hijacking of neuronal nitric oxide synthase (nNOS), resulting in local generation of nitro-oxidative stress and finally, cancer cell death. The current study aims to establish the substantial mechanism of generation of reactive nitrogen species by 2-ME. We further achieved to identify the specific reactive nitrogen species involved in DNA-damaging mechanism of 2-ME. The study was performed using metastatic osteosarcoma 143B cells. We detected the release of biologically active (free) nitric oxide (•NO) with concurrent measurements of peroxynitrite (ONOO-) in real time in a single cell of 143B cell line by using •NO/ONOO- sensitive microsensors after stimulation with calcium ionophore. Detection of nitrogen dioxide (•NO2) and determination of chemical rate constants were carried out by a stopped-flow technique. The affinity of reactive nitrogen species toward the guanine base of DNA was evaluated by density functional theory calculations. Expression and localization of nuclear factor NF-kB was determined using imaging cytometry, while cell viability assay was evaluated by MTT assay. Herein, we presented that 2-ME triggers pro-apoptotic signalling cascade by increasing cellular reactive nitrogen species overproduction - a result of enzymatic uncoupling of increased nNOS protein levels. In particular, we proved that ONOO- and •NO2 directly formed from peroxynitrous acid (ONOOH) and/or by auto-oxidation of •NO, are inducers of DNA damage in anticancer mechanism of 2-ME. Specifically, the affinity of reactive nitrogen species toward the guanine base of DNA, evaluated by density functional theory calculations, decreased in the order: ONOOH > ONOO- > â€¢NO2 > â€¢NO. Therefore, we propose to consider the specific inducers of nNOS as an effective tool in the field of chemotherapy.


Assuntos
Neoplasias Ósseas , Osteossarcoma , 2-Metoxiestradiol , DNA , Humanos , Óxido Nítrico , Óxido Nítrico Sintase Tipo I , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Ácido Peroxinitroso , Espécies Reativas de Nitrogênio
14.
Int J Mol Sci ; 21(5)2020 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-32143309

RESUMO

Green tea (Camellia sinesis) is widely known for its anticancer and anti-inflammatory properties. Among the biologically active compounds contained in Camellia sinesis, the main antioxidant agents are catechins. Recent scientific research indicates that the number of hydroxyl groups and the presence of characteristic structural groups have a major impact on the antioxidant activity of catechins. The best source of these compounds is unfermented green tea. Depending on the type and origin of green tea leaves, their antioxidant properties may be uneven. Catechins exhibit the strong property of neutralizing reactive oxygen and nitrogen species. The group of green tea catechin derivatives includes: epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin gallate. The last of these presents the most potent anti-inflammatory and anticancer potential. Notably, green tea catechins are widely described to be efficient in the prevention of lung cancer, breast cancer, esophageal cancer, stomach cancer, liver cancer and prostate cancer. The current review aims to summarize the potential anticancer effects and molecular signaling pathways of major green tea catechins. It needs to be clearly emphasized that green tea as well as green tea catechols cannot replace the standard chemotherapy. Nonetheless, their beneficial effects may support the standard anticancer approach.


Assuntos
Antioxidantes/farmacologia , Catequina/química , Chá/química , Animais , Anti-Inflamatórios/farmacologia , Anticarcinógenos/farmacologia , Catequina/análogos & derivados , Fermentação , Humanos , Células-Tronco Neoplásicas/efeitos dos fármacos , Polifenóis/química , Prognóstico
15.
Int J Mol Sci ; 21(2)2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31963524

RESUMO

2-Methoxyestradiol is one of the natural 17ß-estradiol derivatives and a potential novel anticancer agent currently being under evaluation in advanced phases of clinical trials. However, the mechanism of anticancer action of 2-methoxyestradiol has not been yet fully established. In our previous studies we have demonstrated that 2-methoxyestradiol selectively induces the expression and nuclear translocation of neuronal nitric oxide synthase in osteosarcoma 143B cells. Heat shock proteins (Hsps) are factors involved in the regulation of expression and activity of nitric oxide synthases. Herein, we chose osteosarcoma cell lines differed in metastatic potential, metastatic 143B and highly metastatic MG63.2 cells, in order to further investigate the anticancer mechanism of 2-methoxyestradiol. The current study aimed to determine the role of major heat shock proteins, Hsp90 and Hsp70 in 2-methoxyestradiol-induced osteosarcoma cell death. We focused on the implication of Hsp90 and Hsp70 in control under expression of neuronal nitric oxide synthase, localization of the enzyme, and further generation of nitro-oxidative stress. To give the insight into the role of Hsp90 in regulation of anticancer efficacy of 2-methoxyestradiol, we used geldanamycin as a potent Hsp90 inhibitor. Herein, we evidenced that inhibition of Hsp90 controls the protein expression of 2-methoxyestradiol-induced neuronal nitric oxide synthase and inhibits enzyme nuclear translocation. We propose that decreased level of neuronal nitric oxide synthase protein after a combined treatment with 2-methoxyestradiol and geldanamycin is directly associated with the accompanying upregulation of Hsp70 and downregulation of Hsp90. This interaction resulted in abrogation of anticancer efficacy of 2-methoxyestradiol by geldanamycin.


Assuntos
2-Metoxiestradiol/farmacologia , Benzoquinonas/farmacologia , Neoplasias Ósseas/patologia , Interações Medicamentosas , Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactamas Macrocíclicas/farmacologia , Osteossarcoma/patologia , Animais , Antibióticos Antineoplásicos/farmacologia , Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Modelos Biológicos , Osteossarcoma/tratamento farmacológico , Osteossarcoma/metabolismo
16.
Nutrients ; 11(11)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652764

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) is an essential polyunsaturated fatty acid compound present in deep water fishes and dietary supplements, with a wide spectrum of potential health benefits, ranging from neurological to anti-inflammatory. METHODS: Due to the fact that DHA is considered a breast cancer risk reducer, we examined the impact of DHA on MCF-7 breast cancer cells' viability and its inhibitory properties on protein tyrosine phosphatase 1B (PTP1B), a pro-oncogenic phosphatase. RESULTS: We found that DHA is able to lower both the enzymatic activity of PTP1B phosphatase and the viability of MCF-7 breast cancer cells. We showed that unsaturated DHA possesses a significantly higher inhibitory activity toward PTP1B in comparison to similar fatty acids. We also performed a computational analysis of DHA binding to PTP1B and discovered that it is able to bind to an allosteric binding site. CONCLUSIONS: Utilizing both a recombinant enzyme and cellular models, we demonstrated that DHA can be considered a potential pharmacological agent for the prevention of breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Feminino , Humanos , Células MCF-7 , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
17.
Nitric Oxide ; 93: 102-114, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31541733

RESUMO

Elevated levels of reactive nitrogen species, alteration in redox balance and deregulated redox signaling are common hallmarks of cancer progression and chemoresistance. However, depending on the cellular context, distinct reactive nitrogen species are also hypothesized to mediate cytotoxic activity and are thus used in anticancer therapies. We present here the dual face of nitric oxide and its derivatives in cancer biology. Main derivatives of nitric oxide, such as nitrogen dioxide and peroxynitrite cause cell death by inducing protein and lipid peroxidation and/or DNA damage. Moreover, they control the activity of important protein players within the pro- and anti-apoptotic signaling pathways. Thus, the control of intracellular reactive nitrogen species may become a sophisticated tool in anticancer strategies.


Assuntos
Neoplasias/tratamento farmacológico , Doadores de Óxido Nítrico/uso terapêutico , Óxido Nítrico/metabolismo , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia , Ácido Peroxinitroso/química , Ácido Peroxinitroso/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteínas/química , Proteínas/metabolismo
18.
Toxicol In Vitro ; 61: 104624, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31419504

RESUMO

Phosphatase PTP1B has become a therapeutic target for the treatment of type 2-diabetes, whereas recent studies have revealed that PTP1B plays a pivotal role in pathophysiology and development of breast cancer. Oleuropein is a natural, phenolic compound with anticancer activity. The aim of this study was to address the question whether PTP1B constitutes a target for oleuropein in breast cancer MCF-7 cells. The cellular MCF-7 breast cancer model was used in the study. The experiments were performed using cellular viability tests, Elisa assays, immunoprecipitation, flow cytometry analyses and computer modelling. Herein, we evidenced that the reduced activity of phosphatase PTP1B after treatment with oleuropein is strictly correlated with decreased MCF-7 cellular viability and cell cycle arrest. These results provide new insight into further research on oleuropein and possible role of the compound in adjuvant treatment of breast cancer.


Assuntos
Adenocarcinoma/tratamento farmacológico , Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Iridoides/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Adenocarcinoma/enzimologia , Antineoplásicos/química , Neoplasias da Mama/enzimologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Glucosídeos Iridoides , Iridoides/química , Células MCF-7 , Simulação de Dinâmica Molecular , Proteína Tirosina Fosfatase não Receptora Tipo 1/química , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética
19.
Anticancer Res ; 39(7): 3379-3384, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31262859

RESUMO

BACKGROUND/AIM: PTP1B tyrosine phosphatase is involved in the development of many types of cancers, such as breast cancer or lung cancer. Therefore, PTP1B is a promising target for anticancer therapy. The purpose of this review was to present the studies on selected PTP1B inhibitors as a possible treatment and describe the latest trends of current research in this field. MATERIALS AND METHODS: This literature review was performed using the PubMed database and the analysis of previous research studies of our Department. RESULTS: Recent studies have shown that PTP1B, due to its implication in oncogenic transformation, represents a promising drug target. CONCLUSION: The selected compounds that are effective PTP1B inhibitors can be considered a promising anticancer treatment, both as monotherapy and in combination with other anticancer drugs.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Proteína Tirosina Fosfatase não Receptora Tipo 1/antagonistas & inibidores , Antineoplásicos/farmacologia , Humanos , Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Quinases da Família src/metabolismo
20.
Anticancer Res ; 39(3): 1243-1251, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30842154

RESUMO

BACKGROUND/AIM: Oleuropein belongs to the potent polyphenols of olive oil. Notably, it is considered as a potentially active anticancer agent. Herein, the anticancer efficiency of oleuropein, when used separately and in combination with the chemotherapeutic agent, 2-methoxyestradiol (2-ME), was investigated in highly metastatic osteosarcoma (OS) cells. MATERIALS AND METHODS: Human OS cells (143B OS cell line) were incubated with oleuropein and 2-ME, alone or in combination. Cell viability was determined by the MTT assay. Cell migration assays were used in order to determine the anti-migratory potential of the compounds, while their impact on autophagy was evaluated via the LC3-antibody-based detection assay. The interaction between oleuropein and 2-ME was determined via the CalcuSyn software. RESULTS: Both anti-migratory and anti-proliferative effects of oleuropein were demonstrated on human OS cells. Anticancer effects of oleuropein were significantly enhanced after 2-ME addition. Treatment of 143B OS cell with oleuropein, alone or in combination with 2-ME resulted in induction of autophagy. CONCLUSION: The obtained data suggest an anticancer effect of oleuropein, alone and in combination with 2-ME, on highly metastatic 143B OS cells. Notably, a synergism between oleuropein and 2-ME towards 143B OS cells was detected. The exact mechanism of this synergism needs to be further investigated; nonetheless, induction of nitro-oxidative stress and/or induction of autophagy are suggested.


Assuntos
2-Metoxiestradiol/farmacologia , Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Iridoides/farmacologia , Osteossarcoma/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Glucosídeos Iridoides , Azeite de Oliva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...