Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(38)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37311467

RESUMO

Quantum emitters in two-dimensional hexagonal boron nitride (h-BN) have generated significant interest due to observations of ultra-bright emission made at room temperature. The expectation that solid-state emitters exhibit broad zero-phonon lines at elevated temperatures has been put in question by recent observations of Fourier transform (FT) limited photons emitted from h-BN flakes at room temperature. All decoupled emitters produce photons that are directed in-plane, suggesting that the dipoles are perpendicular to the h-BN plane. Motivated by the promise of an efficient and scalable source of indistinguishable photons that can operate at room temperature, we have developed an approach using density functional theory (DFT) to determine the electron-phonon coupling for defects that have in- and out-of-plane transition dipole moments. Our DFT calculations reveal that the transition dipole for theC2CNdefect is parallel to the h-BN plane, and for theVNNBdefect is perpendicular to the plane. We calculate both the phonon density of states and the electron-phonon matrix elements associated with the h-BN defective structures. We find no indication that an out-of-plane transition dipole by itself will result in the low electron-phonon coupling that is expected to produce FT-limited photons at room temperature. Our work provides direction to future DFT software developments and adds to the growing list of calculations relevant to researchers in the field of solid-state quantum information processing.

2.
Phys Rev Lett ; 128(15): 153602, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35499869

RESUMO

Coherent quantum systems are a key resource for emerging quantum technology. Solid-state spin systems are of particular importance for compact and scalable devices. However, interaction with the solid-state host degrades the coherence properties. The negatively charged silicon vacancy center in diamond is such an example. While spectral properties are outstanding, with optical coherence protected by the defects symmetry, the spin coherence is susceptible to rapid orbital relaxation limiting the spin dephasing time. A prolongation of the orbital relaxation time is therefore of utmost urgency and has been tackled by operating at very low temperatures or by introducing large strain. However, both methods have significant drawbacks: the former requires use of dilution refrigerators and the latter affects intrinsic symmetries. Here, a novel method is presented to prolong the orbital relaxation with a locally modified phonon density of states in the relevant frequency range, by restricting the diamond host to below 100 nm. Subsequently measured coherent population trapping shows an extended spin dephasing time compared to the phonon-limited time in a pure bulk diamond. The method works at liquid helium temperatures of few Kelvin and in the low-strain regime.

3.
Phys Rev Lett ; 114(14): 145502, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910136

RESUMO

We report direct measurement of population dynamics in the excited state manifold of a nitrogen-vacancy (NV) center in diamond. We quantify the phonon-induced mixing rate and demonstrate that it can be completely suppressed at low temperatures. Further, we measure the intersystem crossing (ISC) rate for different excited states and develop a theoretical model that unifies the phonon-induced mixing and ISC mechanisms. We find that our model is in excellent agreement with experiment and that it can be used to predict unknown elements of the NV center's electronic structure. We discuss the model's implications for enhancing the NV center's performance as a room-temperature sensor.

4.
Phys Rev Lett ; 108(14): 143601, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22540792

RESUMO

We demonstrate quantum interference between indistinguishable photons emitted by two nitrogen-vacancy centers in distinct diamond samples separated by two meters. Macroscopic solid immersion lenses are used to enhance photon collection efficiency. Quantum interference is verified by measuring a value of the second-order cross-correlation function g((2))(0)=0.35±0.04<0.5. In addition, optical transition frequencies of two separated nitrogen-vacancy centers are tuned into resonance with each other by applying external electric fields. An extension of the present approach to generate entanglement of remote solid-state qubits is discussed.

5.
Nature ; 474(7353): 623-6, 2011 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-21720367

RESUMO

Single quantum emitters such as atoms are well known as non-classical light sources with reduced noise in the intensity, capable of producing photons one by one at given times. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example is the predicted ability of a single atom to produce quadrature-squeezed light, which has fluctuations of amplitude or phase that are below the shot-noise level. However, such squeezing is much more difficult to observe than the emission of single photons. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms, but despite experimental efforts, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity, which is several orders of magnitude larger than in typical macroscopic media. This produces observable quadrature squeezing, with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons, the squeezed light stems from the quantum coherence of photon pairs emitted from the system. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emitters.

6.
Nature ; 462(7275): 898-901, 2009 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-20016597

RESUMO

Feedback is one of the most powerful techniques for the control of classical systems. An extension into the quantum domain is desirable as it could allow the production of non-trivial quantum states and protection against decoherence. The difficulties associated with quantum, as opposed to classical, feedback arise from the quantum measurement process-in particular the quantum projection noise and the limited measurement rate-as well as from quantum fluctuations perturbing the evolution in a driven open system. Here we demonstrate real-time feedback control of the motion of a single atom trapped in an optical cavity. Individual probe photons carrying information about the atomic position activate a dipole laser that steers the atom on timescales 70 times shorter than the atom's oscillation period in the trap. Depending on the specific implementation, the trapping time is increased by a factor of more than four owing to feedback cooling, which can remove almost all the kinetic energy of the atom in a quarter of an oscillation period. Our results show that the detected photon flux reflects the atomic motion, and thus mark a step towards the exploration of the quantum trajectory of a single atom at the standard quantum limit.

7.
Phys Rev Lett ; 101(20): 203602, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19113340

RESUMO

Single atoms absorb and emit light from a resonant laser beam photon by photon. We show that a single atom strongly coupled to an optical cavity can absorb and emit resonant photons in pairs. The effect is observed in a photon correlation experiment on the light transmitted through the cavity. We find that the atom-cavity system transforms a random stream of input photons into a correlated stream of output photons, thereby acting as a two-photon gateway. The phenomenon has its origin in the quantum anharmonicity of the energy structure of the atom-cavity system. Future applications could include the controlled interaction of two photons by means of one atom.

8.
Phys Rev Lett ; 99(1): 013002, 2007 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-17678150

RESUMO

A single atom strongly coupled to a cavity mode is stored by three-dimensional confinement in blue-detuned cavity modes of different longitudinal and transverse order. The vanishing light intensity at the trap center reduces the light shift of all atomic energy levels. This is exploited to detect a single atom by means of a dispersive measurement with 95% confidence in 10 micros, limited by the photon-detection efficiency. As the atom switches resonant cavity transmission into cavity reflection, the atom can be detected while scattering about one photon.

9.
Opt Lett ; 31(11): 1738-40, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16688279

RESUMO

We report a new type of coupling between quantum dot excitons mediated by the strong single-photon field in a high-finesse micropillar cavity. Coherent exciton coupling is observed for two dots with energy differences of the order of the exciton-photon coupling. The coherent coupling mode is characterized by an anticrossing with a particularly large line splitting of 250 microeV. Because of the different dispersion relations with temperature, the simultaneous photonic coupling of quantum dot excitons can be easily distinguished from cases of sequential strong coupling of two quantum dots.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA