Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Thorac Cancer ; 15(28): 2000-2020, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39169897

RESUMO

BACKGROUND: Awareness of age-related features of carcinogenesis and the importance of cellular immunity is crucial for developing effective antitumor therapies for specific patient groups. METHODS: In this study, we examined different populations of cancer stem cells (CSCs) and circulating tumor cells (CTCs) in "young" (8-10 weeks) and "aged" (80-82 weeks) C57BL/6 male mice. We used an orthotopic model of Lewis lung carcinoma (LLC) to evaluate the effectiveness of cell therapy targeting lung cancer through reprogrammed CD8-positive T cells (rCD8+ T cells) in mice from two different ages. RESULTS: The findings revealed that tumor progression with age is primarily caused by impaired recruitment of T cells to the lungs. Additionally, a lower number of CTCs and CSCs were observed in younger mice compared to the older mice. The antitumor effect of rCD8+ T cells in aged mice was found to be inferior to that in young mice, which can be attributed to the reduced impact of therapy on specific CSCs populations. CONCLUSIONS: These results offer new insights into the treatment of lung cancer using rCD8+ T cells. Considering the age-related characteristics influencing disease progression, this therapy has the potential to significantly enhance the effectiveness of treatment methods.


Assuntos
Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Lewis/patologia , Carcinoma Pulmonar de Lewis/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Masculino , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/imunologia , Fatores Etários , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas/patologia , Células Neoplásicas Circulantes/patologia , Humanos , Modelos Animais de Doenças
2.
Front Pharmacol ; 15: 1272534, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38303988

RESUMO

γ-Aminobutyric acid type A receptors (GABAARs) are members of the pentameric ligand-gated ion channel (pLGIC) family, which are widespread throughout the invertebrate and vertebrate central nervous system. GABAARs are engaged in short-term changes of the neuronal concentrations of chloride (Cl-) and bicarbonate (HCO3 -) ions by their passive permeability through the ion channel pore. GABAARs are regulated by various structurally diverse phenolic substances ranging from simple phenols to complex polyphenols. The wide chemical and structural variability of phenols suggest similar and different binding sites on GABAARs, allowing them to manifest themselves as activators, inhibitors, or allosteric ligands of GABAAR function. Interest in phenols is associated with their great potential for GABAAR modulation, but also with their subsequent negative or positive role in neurological and psychiatric disorders. This review focuses on the GABAergic deficit hypotheses during neurological and psychiatric disorders induced by various phenols. We summarize the structure-activity relationship of general phenol groups concerning their differential roles in the manifestation of neuropsychiatric symptoms. We describe and analyze the role of GABAAR subunits in manifesting various neuropathologies and the molecular mechanisms underlying their modulation by phenols. Finally, we discuss how phenol drugs can modulate GABAAR activity via desensitization and resensitization. We also demonstrate a novel pharmacological approach to treat neuropsychiatric disorders via regulation of receptor phosphorylation/dephosphorylation.

3.
Electrophoresis ; 45(5-6): 411-419, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38084469

RESUMO

We developed a method of sensitive capillary electrophoresis using UV detection for the determination of certain free aminothiols (reduced cysteinylglycine (rCysGly), cysteine (rCys), glutathione (rGln), and cystine (CysS) in human blood plasma. The reduced thiols were derivatized with N-ethylmaleimide. The plasma was purified from proteins via ultrafiltration. Electrophoretic separation was performed using 115 mM Na phosphate with 7.5% (v/v) polyethylene glycol 600, pH 2.3. The in-capillary concentration of the analytes was achieved with a pH gradient created via the preinjection of triethanolamine and postinjection of phosphoric acid. The separation was carried out using a silica capillary (50 µm i.d.; total/effective separation length 42/35 cm) at a 25 kV voltage. The total analysis/regeneration time was 18 min. The quantification limits varied from 1.3 µM (rCysGly) to 5.4 µM (CysS). The accuracy was 95%-99%, and the repeatability and reproducibility were approximately 1.8%-3.8% and 1.9%-5.0%, respectively. An analysis of plasma samples from healthy volunteers (N = 41) showed that the mean levels of rCysGly, rCys, rGln, and CysS were 1.64, 10.6, 2.58, and 46.2 µM, respectively.


Assuntos
Cistina , Compostos de Sulfidrila , Humanos , Reprodutibilidade dos Testes , Eletroforese Capilar/métodos , Aminas , Plasma , Concentração de Íons de Hidrogênio
4.
Cells ; 12(24)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132098

RESUMO

The glycocalyx is a brush-like layer that covers the surfaces of the membranes of most cell types. It consists of a mixture of carbohydrates, mainly glycoproteins and proteoglycans. Due to its structure and sensitivity to environmental conditions, it represents a complicated object to investigate. Here, we review studies of the glycocalyx conducted using scanning probe microscopy approaches. This includes imaging techniques as well as the measurement of nanomechanical properties. The nanomechanics of the glycocalyx is particularly important since it is widely present on the surfaces of mechanosensitive cells such as endothelial cells. An overview of problems with the interpretation of indirect data via the use of analytical models is presented. Special insight is given into changes in glycocalyx properties during pathological processes. The biological background and alternative research methods are briefly covered.


Assuntos
Células Endoteliais , Glicocálix , Glicocálix/metabolismo , Células Endoteliais/metabolismo , Microscopia de Força Atômica/métodos , Microscopia de Varredura por Sonda , Proteoglicanas/metabolismo
5.
J Clin Med ; 12(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37685718

RESUMO

We examined standard clinical and laboratory biochemical parameters, as well as the levels of aminothiols in the blood and urine (homocysteine (Hcy), cysteine (Cys), S-adenosylmethionine (SAM), and S-adenosylhomocysteine (SAH)) via capillary electrophoresis in patients with CKD at stages II-V. Patient outcomes were assessed after five years. To complete forecasting, correlation and ROC analysis were performed. It was found that the levels of Cys and Hcy in blood plasma were earlier markers of CKD starting from stage II, while the levels of SAM and SAM/SAH in urine made it possible to differentiate between CKD at stages II and III. Blood plasma Hcy and urinary SAM and SAM/SAH correlated with mortality, but plasma Hcy concentrations were more significant. Thus, plasma Hcy, urine SAM, and SAM/SAH can be considered to be potential diagnostic and prognostic markers in patients with CKD.

6.
J Funct Biomater ; 14(7)2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37504843

RESUMO

Platinum nanoparticles (nPts) have neuroprotective/antioxidant properties, but the mechanisms of their action in cerebrovascular disease remain unclear. We investigated the brain bioavailability of nPts and their effects on brain damage, cerebral blood flow (CBF), and development of brain and systemic oxidative stress (OS) in a model of cerebral ischemia (hemorrhage + temporary bilateral common carotid artery occlusion, tBCAO) in rats. The nPts (0.04 g/L, 3 ± 1 nm diameter) were administered to rats (N = 19) intraperitoneally at the start of blood reperfusion. Measurement of CBF via laser Doppler flowmetry revealed that the nPts caused a rapid attenuation of postischemic hypoperfusion. The nPts attenuated the apoptosis of hippocampal neurons, the decrease in reduced aminothiols level in plasma, and the glutathione redox status in the brain, which were induced by tBCAO. The content of Pt in the brain was extremely low (≤1 ng/g). Thus, nPts, despite the extremely low brain bioavailability, can attenuate the development of brain OS, CBF dysregulation, and neuronal apoptosis. This may indicate that the neuroprotective effects of nPts are due to indirect mechanisms rather than direct activity in the brain tissue. Research on such mechanisms may offer a promising trend in the treatment of acute disorders of CBF.

7.
Metabolites ; 13(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37367901

RESUMO

Coronary artery disease (CAD) and the coronary artery bypass graft (CABG) are associated with a decreased blood glutathione (bGSH) level. Since GSH metabolism is closely related to other aminothiols (homocysteine and cysteine) and glucose, the aim of this study was to reveal the associations of bGSH with glucose and plasma aminothiols in CAD patients (N = 35) before CABG and in the early postoperative period. Forty-three volunteers with no history of cardiovascular disease formed the control group. bGSH and its redox status were significantly lower in CAD patients at admission. CABG had no significant effect on these parameters, with the exception of an increase in the bGSH/hemoglobin ratio. At admission, CAD patients were characterized by negative associations of homocysteine and cysteine with bGSH. All these associations disappeared after CABG. An association was found between an increase in oxidized GSH in the blood in the postoperative period and fasting glucose levels. Thus, CAD is associated with the depletion of the intracellular pool and the redox status of bGSH, in which hyperhomocysteinemia and a decrease in the bioavailability of the extracellular pool of cysteine play a role. The present study indicates that CABG causes disruptions in aminothiol metabolism and induces the synthesis of bGSH. Moreover, glucose becomes an important factor in the dysregulation of GSH metabolism in CABG.

8.
Pharmaceutics ; 15(6)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37376203

RESUMO

Previously, we showed in the human umbilical vein endothelial cells (HUVECs) model that a liposome formulation of melphalan lipophilic prodrug (MlphDG) decorated with selectin ligand tetrasaccharide Sialyl Lewis X (SiaLeX) undergoes specific uptake by activated cells and in an in vivo tumor model causes a severe antivascular effect. Here, we cultured HUVECs in a microfluidic chip and then applied the liposome formulations to study their interactions with the cells in situ under hydrodynamic conditions close to capillary blood flow using confocal fluorescent microscopy. The incorporation of 5 to 10% SiaLeX conjugate in the bilayer of MlphDG liposomes increased their consumption exclusively by activated endotheliocytes. The increase of serum concentration from 20 to 100% in the flow resulted in lower liposome uptake by the cells. To elucidate the possible roles of plasma proteins in the liposome-cell interactions, liposome protein coronas were isolated and analyzed by shotgun proteomics and immunoblotting of selected proteins. Proteomic analysis showed that a gradual increase in SiaLeX content correlated with the overall enrichment of the liposome-associated proteins with several apolipoproteins, including the most positively charged one, ApoC1, and serum amyloid A4, associated with inflammation, on the one hand, and a decrease in the content of bound immunoglobulins, on the other. The article discusses the potential interference of the proteins in the binding of liposomes to selectins of endothelial cells.

9.
Biomedicines ; 11(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36830787

RESUMO

Platelets are one of the main participants in vascular accidents in cases of coronary heart disease (CHD). In this study, we sought to detect platelet apoptosis in patients with coronary artery disease who underwent scheduled myocardial revascularization surgery. To identify apoptotic events, we analyzed phosphatidylserine (PS) expression on the surface of platelets and mitochondrial membrane potential (ΔΨm) by flow cytometry in two groups of 30 patients aged 45-60 years: Group 1-patients before myocardial revascularization surgery and group 2-patients after myocardial revascularization surgery. The control group consisted of 10 healthy volunteers aged 45-60 years. According to our data, the percentage levels of PS expression in patients greatly decreased after surgery. We confirmed platelet apoptosis by recording depolarization of ΔΨm in pre- and postoperative patients. ΔΨm readings were considerably improved after surgery. Our data indicated that the functional parameters of platelets in patients with coronary heart disease differed from the characteristics of platelets in patients who underwent myocardial revascularization, and from those of patients in a control group. Future studies of platelet phenotypic characteristics and platelet apoptosis biomarkers should greatly advance our understanding of the pathophysiology of coronary heart disease, and further promote the development of methods for predicting adverse outcomes after surgery.

10.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769085

RESUMO

Zinc ions (Zn2+) are concentrated in various brain regions and can act as a neuromodulator, targeting a wide spectrum of postsynaptic receptors and enzymes. Zn2+ inhibits the GABAARs, and its potency is profoundly affected by the subunit composition and neuronal developmental stage. Although the extracellular amino acid residues of the receptor's hetero-oligomeric structure are preferred for Zn2+ binding, there are intracellular sites that, in principle, could coordinate its potency. However, their role in modulating the receptor function during postembryonic development remains unclear. The GABAAR possesses an intracellular ATPase that enables the energy-dependent anion transport via a pore. Here, we propose a mechanistic and molecular basis for the inhibition of intracellular GABAAR/ATPase function by Zn2+ in neonatal and adult rats. The enzymes within the scope of GABAAR performance as Cl-ATPase and then as Cl-, HCO3-ATPase form during the first week of postnatal rat development. In addition, we have shown that the Cl-ATPase form belongs to the ß1 subunit, whereas the ß3 subunit preferably possesses the Cl-, HCO3-ATPase activity. We demonstrated that a Zn2+ with variable efficacy inhibits the GABAAR as well as the ATPase activities of immature or mature neurons. Using fluorescence recording in the cortical synaptoneurosomes (SNs), we showed a competitive association between Zn2+ and NEM in parallel changes both in the ATPase activity and the GABAAR-mediated Cl- and HCO3- fluxes. Finally, by site-directed mutagenesis, we identified in the M3 domain of ß subunits the cysteine residue (C313) that is essential for the manifestation of Zn2+ potency.


Assuntos
Cisteína , Receptores de GABA-A , Ratos , Animais , Receptores de GABA-A/metabolismo , Zinco/farmacologia , Zinco/metabolismo , Adenosina Trifosfatases/metabolismo , Ácido gama-Aminobutírico
11.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555420

RESUMO

Using a model of Lewis lung carcinoma (LLC) in vitro and in vivo, we previously demonstrated increased antitumor activity in CD8+ T-cells reprogrammed with an MEK inhibitor and PD-1 blocker. In this follow-up study, we carried out the reprogramming of human CD8+ T-cells (hrT-cell) using the MEK inhibitor and PD-1 blocker and targeted LLC cells. The effects of hrT-cell therapy were studied in a mouse model of spontaneous metastasis of a solid LLC tumor. We found antimetastatic activity of hrT-cells, a decrease in the number of cancer cells and cancer stem cells in the lungs, and an increase in the number of T-cells in the blood (including effector T-cells). Thus, reprogramming of human CD8+ T-cells with an MEK inhibitor and PD-1 blocker with targeted training by tumor target cells is a potential platform for developing a new approach to targeted lung cancer therapy.


Assuntos
Carcinoma Pulmonar de Lewis , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Carcinoma Pulmonar de Lewis/terapia , Carcinoma Pulmonar de Lewis/patologia , Camundongos Endogâmicos C57BL , Linfócitos T CD8-Positivos/patologia , Seguimentos , Receptor de Morte Celular Programada 1 , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/secundário , Quinases de Proteína Quinase Ativadas por Mitógeno
12.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142766

RESUMO

Current methods for diagnosis and treatment of small cell lung cancer (SCLC) have only a modest efficacy. In this pilot study, we analyzed circulating tumor cells (CTCs) and cancer stem cells (CSCs) in patients with SCLC to search for new diagnostic and prognostic markers and novel approaches to improve the treatment of the disease. In other forms of lung cancer, we showed a heterogeneity of blood CTCs and CSCs populations, as well as changes in other cell populations (ALDH+, CD87+CD276+, and EGF+Axl+) in smokers. A number of CTCs and CSCs in patients with SCLC have been shown to be resistant to chemotherapy (CT). High cytotoxic activity and resistance to apoptosis of reprogrammed CD3+CD8+ T-lymphocytes (rTcells) in relation to naive CD3+CD8+ T-lymphocytes was demonstrated in a smoking patient with SCLC (Patient G) in vitro. The target for rTcells was patient G's blood CSCs. Reprogramming of CD3+CD8+ T-lymphocytes was carried out with the MEK1/2 inhibitor and PD-1/PD-L1 pathway blocker nivolumab. The training procedure was performed with a suspension of dead CTCs and CSCs obtained from patient's G blood. The presented data show a new avenue for personalized SCLC diagnosis and targeted improvement of chemotherapy based on the use of both CTCs and CSCs.


Assuntos
Neoplasias Pulmonares , Células Neoplásicas Circulantes , Carcinoma de Pequenas Células do Pulmão , Antígenos B7 , Antígeno B7-H1/metabolismo , Fator de Crescimento Epidérmico , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Células Neoplásicas Circulantes/patologia , Células-Tronco Neoplásicas/metabolismo , Nivolumabe , Projetos Piloto , Receptor de Morte Celular Programada 1 , Carcinoma de Pequenas Células do Pulmão/diagnóstico , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico
13.
Electrophoresis ; 43(18-19): 1859-1870, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35833250

RESUMO

A new approach has been developed for the direct determination of reduced (glutathione [GSH]) and oxidized (glutathione disulfide [GSSG]) GSH in whole blood by means of capillary electrophoresis. Its features include GSH-stabilizing sample preparation, the use of an internal standard, and pH-mediated stacking. Blood stabilized with acid citrate and K3 EDTA was treated with acetonitrile with N-ethylmaleimide, and then the analytes were extracted with diethyl ether. The total analysis time was 8 min using a 50-µm (i.d.) by 32.5-cm (eff. length) silica capillary. The background electrolyte was 0.075-M citrate Na pH 5.8 with 200-µM cetyltrimethylammonium bromide and 5-µM sodium dodecyl sulfate, and the separation voltage was -14 kV. The quantification limit (S/N = 15) of the method was 1.5 µM for GSSG. The accuracy levels of GSH and GSSG analysis were 104% and 103%, respectively, and between-run precision levels were 2.6% and 3.2%, respectively. Analysis of blood samples from healthy volunteers (N = 24) showed that the levels of GSH and GSSG and the GSH/GSSG ratio in the whole blood were 1.05 ± 0.14 mM, 3.9 ± 1.25 µM, and 256 ± 94, respectively. Thus, the presented approach can be used in clinical and laboratory practice.


Assuntos
Éter , Glutationa , Acetonitrilas , Cetrimônio , Citratos , Ácido Edético , Eletroforese Capilar/métodos , Etilmaleimida , Glutationa/análise , Dissulfeto de Glutationa/análise , Humanos , Concentração de Íons de Hidrogênio , Dióxido de Silício , Dodecilsulfato de Sódio
14.
Biomedicines ; 10(6)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35740471

RESUMO

CD8+ T-lymphocytes play a key role in antitumor immune response. Patients with lung cancer often suffer from T-lymphocyte dysfunction and low T-cell counts. The exhaustion of effector T-lymphocytes largely limits the effectiveness of therapy. In this study, reprogrammed T-lymphocytes used MEK inhibitors and PD-1 blockers to increase their antitumor activity. Antitumor effects of reprogrammed T-lymphocytes were shown in vitro and in vivo in the Lewis lung carcinoma model. The population of T- lymphocytes with persistent expression of CCR7 was formed as a result of reprogramming. Reprogrammed T-lymphocytes were resistant to apoptosis and characterized by high cytotoxicity against Lewis lung carcinoma (LLC) cells in vitro. Administration of reprogrammed T-lymphocytes to C57BL/6 mice with LLC reduced the number of lung metastases. The antitumor effect resulted from the elimination of tumor cells and cancer stem cells, and the effect of therapy on cytotoxic T-lymphocyte counts. Thus, reprogramming of T-lymphocytes using MEK inhibitors is a promising approach for targeted therapy of lung cancer.

15.
Int J Mol Sci ; 23(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35628132

RESUMO

γ-Aminobutyric acid type A receptors (GABAARs) mediate primarily inhibitory synaptic transmission in the central nervous system. Following fast-paced activation, which provides the selective flow of mainly chloride (Cl-) and less bicarbonate (HCO3-) ions via the pore, these receptors undergo desensitization that is paradoxically prevented by the process of their recovery, referred to as resensitization. To clarify the mechanism of resensitization, we used the cortical synaptoneurosomes from the rat brain and HEK 293FT cells. Here, we describe the effect of γ-phosphate analogues (γPAs) that mimic various states of ATP hydrolysis on GABAAR-mediated Cl- and HCO3- fluxes in response to the first and repeated application of the agonist. We found that depending on the presence of bicarbonate, opened and desensitized states of the wild or chimeric GABAARs had different sensitivities to γPAs. This study presents the evidence that recovery of neuronal Cl- and HCO3- concentrations after desensitization is accompanied by a change in the intracellular ATP concentration via ATPase performance. The transition between the desensitization and resensitization states was linked to changes in both conformation and phosphorylation. In addition, the chimeric ß3 isoform did not exhibit the desensitization of the GABAAR-mediated Cl- influx but only the resensitization. These observations lend a new physiological significance to the ß3 subunit in the manifestation of GABAAR resensitization.


Assuntos
Adenosina Trifosfatases , Receptores de GABA-A , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina , Animais , Bicarbonatos , Cloretos/metabolismo , Células HEK293 , Humanos , Ratos , Receptores de GABA-A/fisiologia , Ácido gama-Aminobutírico/metabolismo
16.
Front Cell Dev Biol ; 9: 778020, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34926461

RESUMO

Despite the increasing urgency of the problem of treating small cell lung cancer (SCLC), information on the causes of its development is fragmentary. There is no complete understanding of the features of antitumor immunity and the role of the microenvironment in the development of SCLC resistance. This impedes the development of new methods for the diagnosis and treatment of SCLC. Lung cancer and chronic obstructive pulmonary disease (COPD) have common pathogenetic factors. COPD is a risk factor for lung cancer including SCLC. Therefore, the search for effective approaches to prevention, diagnosis, and treatment of SCLC in patients with COPD is an urgent task. This review provides information on the etiology and pathogenesis of SCLC, analyses the effectiveness of current treatment options, and critically evaluates the potential of chimeric antigen receptor T cells therapy (CART therapy) in SCLC. Moreover, we discuss potential links between lung cancer and COPD and the role of endothelium in the development of COPD. Finally, we propose a new approach for increasing the efficacy of CART therapy in SCLC.

17.
Dis Markers ; 2021: 7686374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956420

RESUMO

OBJECTIVE: S-Adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) are indicators of global transmethylation and may play an important role as markers of severity of COVID-19. METHODS: The levels of plasma SAM and SAH were determined in patients admitted with COVID-19 (n = 56, mean age = 61). Lung injury was identified by computed tomography (CT) in accordance with the CT0-4 classification. RESULTS: SAM was found to be a potential marker of lung damage risk in COVID-19 patients (SAM > 80 nM; CT3,4 vs. CT 0-2: relative ratio (RR) was 3.0; p = 0.0029). SAM/SAH > 6.0 was also found to be a marker of lung injury (CT2-4 vs. CT0,1: RR = 3.47, p = 0.0004). There was a negative association between SAM and glutathione level (ρ = -0.343, p = 0.011). Interleukin-6 (IL-6) levels were associated with SAM (ρ = 0.44, p = 0.01) and SAH (ρ = 0.534, p = 0.001) levels. CONCLUSIONS: A high SAM level and high methylation index are associated with the risk of lung injury in patients with COVID-19. The association of SAM with IL-6 and glutathione indicates an important role of transmethylation in the development of cytokine imbalance and oxidative stress in patients with COVID-19.


Assuntos
COVID-19/complicações , Lesão Pulmonar/sangue , S-Adenosil-Homocisteína/sangue , S-Adenosilmetionina/sangue , SARS-CoV-2 , Adulto , Idoso , Idoso de 80 Anos ou mais , Aterosclerose/epidemiologia , Biomarcadores , COVID-19/epidemiologia , Comorbidade , Diabetes Mellitus/epidemiologia , Feminino , Glutationa/sangue , Humanos , Hipertensão/epidemiologia , Interleucina-6/sangue , Lesão Pulmonar/diagnóstico por imagem , Lesão Pulmonar/etiologia , Masculino , Metilação , Pessoa de Meia-Idade , Militares , Risco , Tomografia Computadorizada por Raios X , Adulto Jovem
18.
Biomedicines ; 9(9)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34572409

RESUMO

New drug targets, markers of disease prognosis, and more efficient treatment options are an unmet clinical need in breast cancer (BC). We have conducted a pilot study including patients with luminal B stage breast cancer IIA-IIIB. The presence and frequency of various populations of cancer stem cells (CSC) and somatic stem cells were assessed in the blood, breast tumor tissue, and normal breast tissue. Our results suggest that patients with BC can be divided into two distinct groups based on the frequency of aldehyde dehydrogenase positive cells (ALDH1+ cells) in the blood (ALDH1hi and ALDH1low). In the ALDH1hi cells group, the tumor is dominated by epithelial tumor cells CD44+CD24low, CD326+CD44+CD24-, and CD326-CD49f+, while in the ALDH1low cells group, CSCs of mesenchymal origin and epithelial tumor cells (CD227+CD44+CD24- and CD44+CD24-CD49f+) are predominant. In vitro CSCs of the ALDH1low cells group expressing CD326 showed high resistance to cytostatics, CD227+ CSCs of the ALDH1hi cells group are sensitive to cytostatics. Epithelial precursors of a healthy mammary gland were revealed in normal breast tissue of patients with BC from both groups. The cells were associated with a positive effect of chemotherapy and remission in BC patients. Thus, dynamic control of their presence in blood and assessment of the sensitivity of CSCs to cytostatics in vitro can improve the effectiveness of chemotherapy in BC.

19.
Oxid Med Cell Longev ; 2021: 9221693, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557267

RESUMO

OBJECTIVE: Aminothiols (glutathione (GSH), cysteinylglycine (CG)) may play an important role in the pathogenesis of coronavirus disease 2019 (COVID-19), but the possible association of these indicators with the severity of COVID-19 has not yet been investigated. METHODS: The total content (t) and reduced forms (r) of aminothiols were determined in patients with COVID-19 (n = 59) on admission. Lung injury was characterized by computed tomography (CT) findings in accordance with the CT0-4 classification. RESULTS: Low tGSH level was associated with the risk of severe COVID-19 (tGSH ≤ 1.5 µM, mild vs. moderate/severe: risk ratio (RR) = 3.09, p = 0.007) and degree of lung damage (tGSH ≤ 1.8 µM, CT < 2 vs. CT ≥ 2: RR = 2.14, p = 0.0094). The rGSH level showed a negative association with D-dimer levels (ρ = -0.599, p = 0.014). Low rCG level was also associated with the risk of lung damage (rCG ≤ 1.3 µM, CT < 2 vs. CT ≥ 2: RR = 2.28, p = 0.001). Levels of rCG (ρ = -0.339, p = 0.012) and especially tCG (ρ = -0.551, p = 0.004) were negatively associated with platelet count. In addition, a significant relationship was found between the advanced oxidation protein product level and tGSH in patients with moderate or severe but not in patients with mild COVID-19. CONCLUSION: Thus, tGSH and rCG can be seen as potential markers for the risk of severe COVID-19. GSH appears to be an important factor to oxidative damage prevention as infection progresses. This suggests the potential clinical efficacy of correcting glutathione metabolism as an adjunct therapy for COVID-19.


Assuntos
COVID-19/diagnóstico , Dipeptídeos/sangue , Glutationa/sangue , Produtos da Oxidação Avançada de Proteínas/sangue , Idoso , Aminoácidos Sulfúricos/sangue , Biomarcadores/sangue , COVID-19/sangue , COVID-19/patologia , Dipeptídeos/metabolismo , Feminino , Glutationa/metabolismo , Humanos , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Oxirredução , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença
20.
Redox Rep ; 26(1): 117-123, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34236283

RESUMO

OBJECTIVE: Acute brain ischemia is accompanied by a disruption of low-molecular-weight aminothiols (LMWTs) homeostasis, such as homocysteine (Hcy), cysteine (Cys), and glutathione (GSH). We investigated the redox balance of LMWTs in blood plasma and its influence on ischemic stroke severity and the functional outcome in patients with an acute period. PATIENTS AND METHODS: A total of 177 patients were examined. Total and reduced forms of LMWTs were determined in the first 10-24 h. Stroke severity and functional state were estimated using the National Institutes of Health Stroke Scale (NIHSS) and the modified Rankin Scale (mRs) at admission and after 21 days. RESULTS: Patients with high levels of total Hcy (> 19 µM) showed significantly reduced redox statuses of all LMWTs. Patients with low total GSH levels (≤ 1.07 µM) were at an increased risk of higher stroke severity (NIHSS > 10) compared to patients with a total GSH level > 2.64 µM (age/gender-adjusted odds ratio: 4.69, 95% CI: 1.43-15.4). DISCUSSION: (1) low total GSH level can be considered as a novel risk marker for the severity of acute stroke in conditions of low redox status of LMWTs and (2) high Hcy levels associated with low redox status of LMWTs.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Glutationa , Humanos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA