Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 197(2): 131-148, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614193

RESUMO

The development of ultra-intense electron pulse for applications needs to be accompanied by the implementation of a practical dosimetry system. In this study four different systems were investigated as dosimeters for low doses with a very high-dose-rate source. First, the effects of ultra-short pulses were investigated for the yields of the Fricke dosimeter based on acidic solutions of ferrous sulfate; it was established that the yields were not significantly affected by the high dose rates, so the Fricke dosimeter system was used as a reference. Then, aqueous solutions of three compounds as fluorescence chemical dosimeters were utilized, each operated at a different solution pH: terephthalic acid - basic, trimesic acid - acidic, and coumarin-3-carboxylic acid (C3CA) - neutral. Fluorescence chemical dosimeters offer an attractive alternative to chemical dosimeters based on optical absorption for measuring biologically relevant low doses because of their higher sensitivity. The effects of very intense dose rate (TGy/ s) from pulses of fast electrons generated by a picosecond linear accelerator on the chemical yields of fluorescence chemical dosimeters were investigated at low peak doses (<20 Gy) and compared with yields determined under low-dose-rate irradiation from a 60 Co gamma-ray source (mGy/s). For the terephthalate and the trimesic acid dosimeters changes in the yields were not detected within the estimated (∼10%) precision of the experiments, but, due to the complexity of the mechanism of the hydroxyl radical initiated reactions in solutions of the relevant aromatic compounds, significant reductions of the chemical yield (-60%) were observed when the C3CA dosimeter was irradiated with the ultra-short pulses.


Assuntos
Dosímetros de Radiação
2.
ACS Omega ; 6(22): 14447-14457, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34124467

RESUMO

Examination of thermal decomposition of street samples of cocaine and methamphetamine shows that typical products detected in previous studies are accompanied by a wide palette of simple volatile compounds easily detectable by spectral techniques. These molecules increase smoke toxicity and their spectral detection can be potentially used for identification of drug samples by well-controlled laboratory thermolysis in temperature progression. In our study, street samples of cocaine and methamphetamine have been thermolyzed under vacuum over the temperature range of 350-650 °C. The volatile products (CO, HCN, CH4, C2H4, etc.) have been monitored by high-resolution Fourier-transform infrared (FTIR) spectrometry in this temperature range. The decomposition mechanism has been additionally examined theoretically by quantum-chemical calculations for the highest temperature achieved experimentally in our study and beyond. Prior to analysis, the street samples have also been characterized by FTIR, Raman spectroscopy, energy-dispersive X-ray spectroscopy, and melting point determination.

3.
Molecules ; 26(8)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924594

RESUMO

Synthesis of RNA nucleobases from formamide is one of the recurring topics of prebiotic chemistry research. Earlier reports suggest that thymine, the substitute for uracil in DNA, may also be synthesized from formamide in the presence of catalysts enabling conversion of formamide to formaldehyde. In the current paper, we show that to a lesser extent conversion of uracil to thymine may occur even in the absence of catalysts. This is enabled by the presence of formic acid in the reaction mixture that forms as the hydrolysis product of formamide. Under the reaction conditions of our study, the disproportionation of formic acid may produce formaldehyde that hydroxymethylates uracil in the first step of the conversion process. The experiments are supplemented by quantum chemical modeling of the reaction pathway, supporting the plausibility of the mechanism suggested by Saladino and coworkers.


Assuntos
Formamidas/química , Timina/química , Origem da Vida , Uracila/química
4.
Astrobiology ; 20(12): 1476-1488, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32955922

RESUMO

Chemical environments of young planets are assumed to be significantly influenced by impacts of bodies lingering after the dissolution of the protoplanetary disk. We explore the chemical consequences of impacts of these bodies under reducing planetary atmospheres dominated by carbon monoxide, methane, and molecular nitrogen. Impacts were simulated by using a terawatt high-power laser system. Our experimental results show that one-pot impact-plasma-initiated synthesis of all the RNA canonical nucleobases and the simplest amino acid glycine is possible in this type of atmosphere in the presence of montmorillonite. This one-pot synthesis begins with de novo formation of hydrogen cyanide (HCN) and proceeds through intermediates such as cyanoacetylene and urea.


Assuntos
Glicina , Cianeto de Hidrogênio , Nucleotídeos , Atmosfera , Meio Ambiente Extraterreno
5.
Chemistry ; 26(52): 12075-12080, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32293757

RESUMO

Terrestrial volcanism has been one of the dominant geological forces shaping our planet since its earliest existence. Its associated phenomena, like atmospheric lightning and hydrothermal activity, provide a rich energy reservoir for chemical syntheses. Based on our laboratory simulations, we propose that on the early Earth volcanic activity inevitably led to a remarkable production of formic acid through various independent reaction channels. Large-scale availability of atmospheric formic acid supports the idea of the high-temperature accumulation of formamide in this primordial environment.

6.
Chem Commun (Camb) ; 55(71): 10563-10566, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31417990

RESUMO

Besides delivering plausible prebiotic feedstock molecules and high-energy initiators, extraterrestrial impacts could also affect the process of abiogenesis by altering the early Earth's geological environment in which primitive life was conceived. We show that iron-rich smectites formed by reprocessing of basalts due to the residual post-impact heat could catalyze the synthesis and accumulation of important prebiotic building blocks such as nucleobases, amino acids and urea.


Assuntos
Argila/química , Ferro/química , Meteoroides , Silicatos/química , Aminoácidos/química , Catálise , Planeta Terra , Evolução Química , Meio Ambiente Extraterreno/química , Origem da Vida , Ureia/química
7.
Sci Rep ; 8(1): 4266, 2018 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511205

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

8.
Sci Rep ; 7(1): 6275, 2017 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-28740207

RESUMO

Recent results in prebiotic chemistry implicate hydrogen cyanide (HCN) as the source of carbon and nitrogen for the synthesis of nucleotide, amino acid and lipid building blocks. HCN can be produced during impact events by reprocessing of carbonaceous and nitrogenous materials from both the impactor and the atmosphere; it can also be produced from these materials by electrical discharge. Here we investigate the effect of high energy events on a range of starting mixtures representative of various atmosphere-impactor volatile combinations. Using continuously scanning time-resolved spectrometry, we have detected ·CN radical and excited CO as the initially most abundant products. Cyano radicals and excited carbon monoxide molecules in particular are reactive, energy-rich species, but are resilient owing to favourable Franck-Condon factors. The subsequent reactions of these first formed excited species lead to the production of ground-state prebiotic building blocks, principally HCN.


Assuntos
Atmosfera , Monóxido de Carbono/química , Carbono/química , Planeta Terra , Cianeto de Hidrogênio/química , Nitrogênio/química , Prebióticos
9.
Proc Natl Acad Sci U S A ; 114(17): 4306-4311, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28396441

RESUMO

The Miller-Urey experiments pioneered modern research on the molecular origins of life, but their actual relevance in this field was later questioned because the gas mixture used in their research is considered too reducing with respect to the most accepted hypotheses for the conditions on primordial Earth. In particular, the production of only amino acids has been taken as evidence of the limited relevance of the results. Here, we report an experimental work, combined with state-of-the-art computational methods, in which both electric discharge and laser-driven plasma impact simulations were carried out in a reducing atmosphere containing NH3 + CO. We show that RNA nucleobases are synthesized in these experiments, strongly supporting the possibility of the emergence of biologically relevant molecules in a reducing atmosphere. The reconstructed synthetic pathways indicate that small radicals and formamide play a crucial role, in agreement with a number of recent experimental and theoretical results.


Assuntos
RNA/química , Amônia/química , Atmosfera , Monóxido de Carbono/química , Evolução Química , Formamidas/química , Modelos Químicos , Origem da Vida , Oxirredução
10.
Phys Chem Chem Phys ; 18(39): 27317-27325, 2016 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-27722540

RESUMO

Large-scale plasma was created in gas mixtures containing methane using high-power laser-induced dielectric breakdown (LIDB). The composition of the mixtures corresponded to a cometary and/or meteoritic impact into the early atmosphere of either Titan or Earth. A multiple-centimeter-sized fireball was created by focusing a single 100 J, 450 ps near-infrared laser pulse into the center of a 15 L gas cell. The excited reaction intermediates formed during the various stages of the LIDB plasma chemical evolution were investigated using optical emission spectroscopy (OES) with temporal resolution. The chemical consequences of laser-produced plasma generation in a CH4-N2-H2O mixture were investigated using high resolution Fourier-transform infrared absorption spectroscopy (FTIR) and gas selected ion flow tube spectrometry (SIFT). Several simple inorganic and organic compounds were identified in the reaction mixture exposed to ten laser sparks. Deuterated water (D2O) in a gas mixture was used to separate several of the produced isotopomers of acetylene, which were then quantified using the FTIR technique.

12.
Sci Rep ; 6: 23199, 2016 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-26979666

RESUMO

Recent synthetic efforts aimed at reconstructing the beginning of life on our planet point at the plausibility of scenarios fueled by extraterrestrial energy sources. In the current work we show that beyond nucleobases the sugar components of the first informational polymers can be synthesized in this way. We demonstrate that a laser-induced high-energy chemistry combined with TiO2 catalysis readily produces a mixture of pentoses, among them ribose, arabinose and xylose. This chemistry might be highly relevant to the Late Heavy Bombardment period of Earth's history about 4-3.85 billion years ago. In addition, we present an in-depth theoretical analysis of the most challenging step of the reaction pathway, i.e., the TiO2-catalyzed dimerization of formaldehyde leading to glycolaldehyde.


Assuntos
Carboidratos/síntese química , Formaldeído/química , Titânio/química , Arabinose/síntese química , Catálise , Dimerização , Planeta Terra , Evolução Planetária , Origem da Vida , Ribose/síntese química , Xilose/síntese química
13.
Proc Natl Acad Sci U S A ; 112(3): 657-62, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25489115

RESUMO

The coincidence of the Late Heavy Bombardment (LHB) period and the emergence of terrestrial life about 4 billion years ago suggest that extraterrestrial impacts could contribute to the synthesis of the building blocks of the first life-giving molecules. We simulated the high-energy synthesis of nucleobases from formamide during the impact of an extraterrestrial body. A high-power laser has been used to induce the dielectric breakdown of the plasma produced by the impact. The results demonstrate that the initial dissociation of the formamide molecule could produce a large amount of highly reactive CN and NH radicals, which could further react with formamide to produce adenine, guanine, cytosine, and uracil. Based on GC-MS, high-resolution FTIR spectroscopic results, as well as theoretical calculations, we present a comprehensive mechanistic model, which accounts for all steps taking place in the studied impact chemistry. Our findings thus demonstrate that extraterrestrial impacts, which were one order of magnitude more abundant during the LHB period than before and after, could not only destroy the existing ancient life forms, but could also contribute to the creation of biogenic molecules.

14.
J Phys Chem A ; 116(12): 3137-47, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22375598

RESUMO

Time-resolved Fourier transform infrared emission spectroscopy was applied to the study of a pulsed discharge in a He/CH(4) mixture. The dynamics of the formation and decay of acetylene ν(3) (3289 cm(-1)), methane ν(3) (3019 cm(-1)) and ν(1) (2917 cm(-1)), the CH radical electronic ground state X(2)Π(r) (2309-2953 cm(-1)), C(2) Bernath electronic transition B(1)Δ(g)-A(1)Π(u) (3337-3606 cm(-1)), molecular hydrogen emission transitions 5g-4f and 2p-2s, atomic hydrogen, and atomic helium were monitored in the 1800-4000 cm(-1) region. The time profile of the rotational and vibrational temperature of the CH radical was obtained for a 30 µs time interval during and after the discharge pulse. A kinetic model was used for the study of the chemical dynamics of the formation and decay of the individual fragments. The results from the model were compared to the experimental emission spectra.

15.
J Phys Chem A ; 115(10): 1885-99, 2011 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-21344931

RESUMO

Time-resolved Fourier transform (FT) spectrometry was used to study the dynamics of radical reactions forming the HCN and HNC isomers in pulsed glow discharges through vapors of BrCN, acetonitrile (CH(3)CN), and formamide (HCONH(2)). Stable gaseous products of discharge chemistry were analyzed by selected ion flow tube mass spectrometry (SIFT-MS). Ratios of concentrations of the HNC/HCN isomers obtained using known transition dipole moments of rovibrational cold bands v(1) were found to be in the range 2.2-3%. A kinetic model was used to assess the roles the radical chemistry and ion chemistry play in the formation of these two isomers. Exclusion of the radical reactions from the model resulted in a value of the HNC/HCN ratio 2 orders of magnitude lower than the experimental results, thus confirming their dominant role. The major process responsible for the formation of the HNC isomer is the reaction of the HCN isomer with the H atoms. The rate constant determined using the kinetic model from the present data for this reaction is 1.13 (±0.2) × 10(-13) cm(3) s(-1).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...