Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673159

RESUMO

In this study, a detailed structural characterization of epitaxial La0.6Sr0.4CoO3-δ (LSC) films grown in (100), (110), and (111) orientations was conducted. LSC is a model air electrode material in solid oxide fuel and electrolysis cells and understanding the correlation of bulk structure and catalytic activity is essential for the design of future electrode materials. Thin films were grown on single crystals of the perovskite material La0.95Sr0.05Ga0.95Mg0.05O3-δ cut in three different directions. This enabled an examination of structural details at the atomic scale for a realistic material combination in solid oxide cells. The investigation involved the application of atomic force microscopy, X-ray diffraction, and high-resolution transmission electron microscopy to explore the distinct properties of these thin films. Interestingly, ordering phenomena in both cationic as well as anionic sublattices were found, despite the fact that the thin films were never at higher temperatures than 600 °C. Cationic ordering was found in spherical precipitates, whereas the ordering of oxygen vacancies led to the partial transition to brownmillerite in all three orientations. Our results indicate a very high oxygen vacancy concentration in all three thin films. Lattice strains in-plane and out-of-plane was measured, and its implications for the structural modifications are discussed.

2.
Nat Commun ; 15(1): 1730, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409206

RESUMO

Improving materials for energy conversion and storage devices is deeply connected with an optimization of their surfaces and surface modification is a promising strategy on the way to enhance modern energy technologies. This study shows that surface modification with ultra-thin oxide layers allows for a systematic tailoring of the surface dipole and the work function of mixed ionic and electronic conducting oxides, and it introduces the ionic potential of surface cations as a readily accessible descriptor for these effects. The combination of X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) illustrates that basic oxides with a lower ionic potential than the host material induce a positive surface charge and reduce the work function of the host material and vice versa. As a proof of concept that this strategy is widely applicable to tailor surface properties, we examined the effect of ultra-thin decoration layers on the oxygen exchange kinetics of pristine mixed conducting oxide thin films in very clean conditions by means of in-situ impedance spectroscopy during pulsed laser deposition (i-PLD). The study shows that basic decorations with a reduced surface work function lead to a substantial acceleration of the oxygen exchange on the surfaces of diverse materials.

3.
Chem Mater ; 35(13): 5135-5149, 2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37456594

RESUMO

Spinels of the general formula Li2-δM2O4 are an essential class of cathode materials for Li-ion batteries, and their optimization in terms of electrode potential, accessible capacity, and charge/discharge kinetics relies on an accurate understanding of the underlying solid-state mass and charge transport processes. In this work, we report a comprehensive impedance study of sputter-deposited epitaxial Li2-δMn2O4 thin films as a function of state-of-charge for almost the entire tetrahedral-site regime (1 ≤ δ ≤ 1.9) and provide a complete set of electrochemical properties, consisting of the charge-transfer resistance, ionic conductivity, volume-specific chemical capacitance, and chemical diffusivity. The obtained properties vary by up to three orders of magnitude and provide essential insights into the point defect concentration dependences of the overall electrode potential. We introduce a defect chemical model based on simple concentration dependences of the Li chemical potential, considering the tetrahedral and octahedral lattice site restrictions defined by the spinel crystal structure. The proposed model is in excellent qualitative and quantitative agreement with the experimental data, excluding the two-phase regime around 4.15 V. It can easily be adapted for other transition metal stoichiometries and doping states and is thus applicable to the defect chemical analysis of all spinel-type cathode materials.

4.
ACS Appl Energy Mater ; 6(12): 6712-6720, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37388294

RESUMO

The oxygen exchange kinetics and the surface chemistry of epitaxially grown, dense La0.6Sr0.4CoO3-δ (LSC) thin films in three different orientations, (001), (110), and (111), were investigated by means of in situ impedance spectroscopy during pulsed laser deposition (i-PLD) and near-ambient-pressure X-ray photoelectron spectroscopy (NAP-XPS). i-PLD measurements showed that pristine LSC surfaces exhibit very fast surface exchange kinetics but revealed no significant differences between the specific orientations. However, as soon as the surfaces were in contact with acidic, gaseous impurities, such as S-containing compounds in nominally pure measurement atmospheres, NAP-XPS measurements revealed that the (001) orientation is substantially more susceptible to the formation of sulfate adsorbates and a concomitant performance decrease. This result is further substantiated by a stronger increase of the work function on (001)-oriented LSC surfaces upon sulfate adsorbate formation and by a faster performance degradation of these surfaces in ex situ measurement setups. This phenomenon has potentially gone unnoticed in the discussion of the interplay between the crystal orientation and the oxygen exchange kinetics and might have far-reaching implications for real solid oxide cell electrodes, where porous materials exhibit a wide variety of differently oriented and reconstructed surfaces.

5.
J Mater Chem A Mater ; 11(24): 12827-12836, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37346740

RESUMO

Minimizing the overpotential at the air electrode of solid oxide fuel cells (SOFC) is one of the key challenges regarding a broad applicability of this technology. Next to novel materials and geometry optimization, surface modification is a promising and flexible method to alter the oxygen exchange kinetics at SOFC cathode surfaces. Despite extensive research, the mechanism behind the effect of surface decorations is still under debate. Moreover, for Sr decoration, previous studies yielded conflicting results, reporting either a beneficial or a detrimental impact on the oxygen exchange kinetics. In this contribution, in situ impedance spectroscopy during pulsed laser deposition was used to investigate the effect of Sr containing decorations under different deposition conditions. Depending on deposition temperature and interactions with the gas phase, opposing effects of Sr decoration were found. In combination with near-ambient pressure X-ray photoelectron spectroscopy and non-ambient X-ray diffractometry, it was possible to trace this phenomenon back to different chemical environments of the surface Sr. At high temperatures, Sr is deposited as SrO, which can have a beneficial effect on the oxygen exchange kinetics. At low temperatures, SrCO3 adsorbates are formed from trace amounts of CO2 in the measurement atmosphere, causing a decrease of the oxygen exchange rate. These results are in excellent agreement with the concept of surface acidity as a descriptor for the effect of surface decorations, providing further insight into the oxygen exchange kinetics on SOFC cathode surfaces and its degradation. In addition, this study shows that Sr segregation itself initially does not lead to performance degradation but that segregated SrO readily reacts with acidic compounds, reducing the catalytic capability of mixed conducting oxides.

6.
ACS Appl Mater Interfaces ; 15(22): 26787-26798, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37212575

RESUMO

The oxygen exchange kinetics of epitaxial Pr0.1Ce0.9O2-δ electrodes was modified by decoration with submonolayer amounts of different basic (SrO, CaO) and acidic (SnO2, TiO2) binary oxides. The oxygen exchange reaction (OER) rate and the total conductivity were measured by in situ PLD impedance spectroscopy (i-PLD), which allows to directly track changes of electrochemical properties after each deposited pulse of surface decoration. The surface chemistry of the electrodes was investigated by near-ambient pressure XPS measurements (NAP-XPS) at elevated temperatures and by low-energy ion scattering (LEIS). While a significant alteration of the OER rate was observed after decoration with binary oxides, the pO2 dependence of the surface exchange resistance and its activation energy were not affected, suggesting that surface decorations do not alter the fundamental OER mechanism. Furthermore, the total conductivity of the thin films does not change upon decoration, indicating that defect concentration changes are limited to the surface layer. This is confirmed by NAP-XPS measurements which find only minor changes of the Pr-oxidation state upon decoration. NAP-XPS was further employed to investigate changes of the surface potential step on decorated surfaces. From a mechanistic point of view, our results indicate a correlation between the surface potential and the altered oxygen exchange activity. Oxidic decorations induce a surface charge which depends on their acidity (acidic oxides lead to a negative surface charge), affecting surface defect concentrations, any existing surface potential step, potentially adsorption dynamics, and consequently also the OER kinetics.

7.
J Mater Chem A Mater ; 11(13): 7213-7226, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37007913

RESUMO

The effects of sulphur adsorbates and other typical solid oxide fuel cell (SOFC) poisons on the electronic and ionic properties of an SrO-terminated (La,Sr)CoO3 (LSC) surface and on its oxygen exchange kinetics have been investigated experimentally with near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), low energy ion scattering (LEIS) and impedance spectroscopy as well as computationally with density functional theory (DFT). The experiment shows that trace amounts of sulphur in measurement atmospheres form SO2- 4 adsorbates and strongly deactivate a pristine LSC surface. They induce a work function increase, indicating a changing surface potential and a surface dipole. DFT calculations reveal that the main participants in these charge transfer processes are not sub-surface transition metals, but surface oxygen atoms. The study further shows that sulphate adsorbates strongly affect oxygen vacancy formation energies in the LSC (sub-)surface, thus affecting defect concentrations and oxygen transport properties. To generalize these results, the investigation was extended to other acidic oxides which are technologically relevant as SOFC cathode poisons, such as CO2 and CrO3. The results unveil a clear correlation of work function changes and redistributed charge with the Smith acidity of the adsorbed oxide and clarify fundamental mechanistic details of atomic surface modifications. The impact of acidic adsorbates on various aspects of the oxygen exchange reaction rate is discussed in detail.

8.
ACS Appl Mater Interfaces ; 15(6): 8076-8092, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36729502

RESUMO

Electrochemical impedance spectroscopy was used to investigate the chemical capacitance of La0.6Sr0.4CoO3-δ (LSC) thin-film electrodes under anodic polarization (i.e., in the electrolysis mode). For this purpose, electrodes with different microstructures were prepared via pulsed-laser deposition. Analysis of dense electrodes and electrodes with open porosity revealed decreasing chemical capacitances with increasing anodic overpotentials, as expected from defect chemical considerations. However, extremely high chemical capacitance peaks with values in the range of 104 F/cm3 at overpotentials of >140 mV were obtained after annealing for several hours in synthetic air and/or after applying high anodic bias voltages of >750 mV. From the results of several surface analysis techniques and transmission electron microscopy, it is concluded that closed pores develop upon both of these treatments: (i) During annealing, initially open pores get closed by SrSO4, which forms due to strontium segregation in measurement gases with minute traces of sulfur. (ii) The bias treatment causes mechanical failure and morphological changes including closed pores in the bulk of dense films. Under anodic polarization, high-pressure oxygen accumulates in those closed pores, and this causes the capacitance peak. Model calculations based on a real-gas equation allow us to properly predict the experimentally obtained capacitance increase. We demonstrate that analysis of the chemical capacitance of oxygen electrodes in solid oxide electrolysis cells can thus be used as a nondestructive observation tool to detect and quantify closed porosity with a lower detection limit between 10-4 and 10-3.

9.
New Phytol ; 238(5): 2210-2223, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36683444

RESUMO

The epiphytic orchid Caularthron bilamellatum sacrifices its water storage tissue for nutrients from the waste of ants lodging inside its hollow pseudobulb. Here, we investigate whether fungi are involved in the rapid translocation of nutrients. Uptake was analysed with a 15 N labelling experiment, subsequent isotope ratio mass spectrometry (IRMS) and secondary ion mass spectrometry (ToF-SIMS and NanoSIMS). We encountered two hyphae types: a thick melanized type assigned to 'black fungi' (Chaetothyriales, Cladosporiales, and Mycosphaerellales) in ant waste, and a thin endophytic type belonging to Hypocreales. In few cell layers, both hyphae types co-occurred. 15 N accumulation in both hyphae types was conspicuous, while for translocation to the vessels only Hypocreales were involved. There is evidence that the occurrence of the two hyphae types results in a synergism in terms of nutrient uptake. Our study provides the first evidence that a pseudobulb (=stem)-born endophytic network of Hypocreales is involved in the rapid translocation of nitrogen from insect-derived waste to the vegetative and reproductive tissue of the host orchid. For C. bilamellatum that has no contact with the soil, ant waste in the hollow pseudobulbs serves as equivalent to soil in terms of nutrient sources.


Assuntos
Formigas , Ascomicetos , Hypocreales , Orchidaceae , Animais , Nitrogênio/metabolismo , Fungos/metabolismo , Ascomicetos/metabolismo , Nutrientes
10.
Phys Chem Chem Phys ; 25(1): 142-153, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36476841

RESUMO

La0.6Sr0.4FeO3-δ (LSF) electrodes were grown on different electrolyte substrates by pulsed laser deposition (PLD) and their oxygen exchange reaction (OER) resistance was tracked in real-time by in situ PLD impedance spectroscopy (i-PLD) inside the PLD chamber. This enables measurements on pristine surfaces free from any contaminations and the direct observation of thickness dependent properties. As substrates, yttria-stabilized zirconia single crystals (YSZ) were used for polycrystalline LSF growth and La0.95Sr0.05Ga0.95Mg0.05O3-δ (LSGM) single crystals or YSZ single crystals with a 5 nm buffer-layer of Gd0.2Ce0.8O2-δ for epitaxial LSF film growth. While polycrystalline LSF electrodes show a constant OER resistance in a broad thickness range, epitaxially grown LSF electrodes exhibit a continuous and strong increase of the OER resistance with film thickness until ≈60 nm. In addition, the activation energy of the OER resistance increases by 0.23 eV compared to polycrystalline LSF. High resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) measurements reveal an increasing contraction of the out-of-plane lattice parameter in the epitaxial LSF electrodes over electrode thickness. Defect thermodynamic simulations suggest that the decrease of the LSF unit cell volume is accompanied by a lowering of the oxygen vacancy concentration, explaining both the resistive increase and the increased activation energy.

11.
ACS Appl Energy Mater ; 5(7): 8324-8335, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35909806

RESUMO

The chemical capacitance of La0.6Sr0.4CoO3-δ (LSC) thin film microelectrodes with different microstructures was investigated upon varying anodic DC voltages. Dense and porous electrodes (open porosity) were prepared by using different parameters during pulsed laser deposition (PLD). Furthermore, electrodes with closed porosity were fabricated by depositing a dense capping layer on a porous film. Electrochemical impedance spectroscopy (EIS) was performed in synthetic air at 460 and 608 °C with anodic DC voltages up to 440 mV. Chemical capacitance values of the electrodes were derived from the obtained spectra. While the chemical capacitance of dense and porous electrodes decreased as expected with increasing anodic overpotential, electrodes with closed pores exhibited very unusual peaks with extremely high values of >8000 F/cm3 at overpotentials of >100 mV. We demonstrate that this huge capacitance increase agrees very well with calculated chemical capacitances deduced from a real gas equation. Hence, we conclude that the formation of highly pressurized oxygen (up to gas pressures of ∼104 bar) in closed pores is responsible for this strong capacitive effect at anodic overpotentials. Such measurements can thus detect and quantify the buildup of high internal gas pressures in closed pores at the anode side of solid oxide electrolysis cells.

12.
J Mater Chem A Mater ; 10(28): 14838-14848, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35923869

RESUMO

In this study, five different mixed conducting cathode materials were grown as dense thin films by pulsed laser deposition (PLD) and characterized via in situ impedance spectroscopy directly after growth inside the PLD chamber (i-PLD). This technique enables quantification of the oxygen reduction kinetics on pristine and contaminant-free mixed conducting surfaces. The measurements reveal excellent catalytic performance of all pristine materials with polarization resistances being up to two orders of magnitude lower than those previously reported in the literature. For instance, on dense La0.6Sr0.4CoO3-δ thin films, an area specific surface resistance of ∼0.2 Ω cm2 at 600 °C in synthetic air was found, while values usually >1 Ω cm2 are measured in conventional ex situ measurement setups. While surfaces after i-PLD measurements were very clean, ambient pressure X-ray photoelectron spectroscopy (AP-XPS) measurements found that all samples measured in other setups were contaminated with sulfate adsorbates. In situ impedance spectroscopy during AP-XPS revealed that already trace amounts of sulfur present in high purity gases accumulate quickly on pristine surfaces and lead to strongly increased surface polarization resistances, even before the formation of a SrSO4 secondary phase. Accordingly, the inherent excellent catalytic properties of this important class of materials were often inaccessible so far. As a proof of concept, the fast kinetics observed on sulfate-free surfaces were also realized in ex situ measurements with a gas purification setup and further reduces the sulfur concentration in the high purity gas.

13.
Mater Adv ; 3(6): 2800-2809, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35419520

RESUMO

Nominally undoped SrTiO3 single crystals were illuminated by UV light at 350 °C in oxidizing as well as reducing atmospheres. In N2/O2 atmospheres, UV irradiation enhances the conductivity of SrTiO3 by several orders of magnitude. In dry H2 atmosphere UV exposure leads to the opposite conductivity effect, i.e., above band gap energy illumination surprisingly lowers the conductivity. This is discussed in the framework of a defect chemical model. We show that a shift in defect concentrations due to UV-driven oxygen incorporation from the gas phase into the oxide is the main cause of the measured conductivity changes. A model is introduced to illustrate the thermodynamic and kinetic drivers of the processes under UV irradiation. Noteably, in reducing H2/H2O atmospheres, the incorporation of oxygen into the investigated oxide under UV light takes place via water splitting. Owing to the predominant electron conduction of SrTiO3 in equilibrium with H2, oxygen incorporation upon UV and thus an increase of the oxygen chemical potential leads to a decrease of the majority electronic charge carrier, here electrons, which lowers the conductivity under UV irradiation.

14.
J Mater Chem A Mater ; 10(5): 2305-2319, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35223039

RESUMO

The oxygen exchange reaction mechanism on truly pristine surfaces of SOFC cathode materials (La0.6Sr0.4CoO3-δ = LSC, La0.6Sr0.4FeO3-δ = LSF, (La0.6Sr0.4)0.98Pt0.02FeO3-δ = Pt:LSF, SrTi0.3Fe0.7O3-δ = STF, Pr0.1Ce0.9O2-δ = PCO and La0.6Sr0.4MnO3-δ = LSM) was investigated employing in situ impedance spectroscopy during pulsed laser deposition (i-PLD) over a wide temperature and p(O2) range. Besides demonstrating the often astonishing catalytic capabilities of the materials, it is possible to discuss the oxygen exchange reaction mechanism based on experiments on clean surfaces unaltered by external degradation processes. All investigated materials with at least moderate ionic conductivity (i.e. all except LSM) exhibit polarization resistances with very similar p(O2)- and T-dependences, mostly differing only in absolute value. In combination with non-equilibrium measurements under polarization and defect chemical model calculations, these results elucidate several aspects of the oxygen exchange reaction mechanism and refine the understanding of the role oxygen vacancies and electronic charge carriers play in the oxygen exchange reaction. It was found that a major part of the effective activation energy of the surface exchange reaction, which is observed during equilibrium measurements, originates from thermally activated charge carrier concentrations. Electrode polarization was therefore used to control defect concentrations and to extract concentration amended activation energies, which prove to be drastically different for oxygen incorporation and evolution (0.26 vs. 2.05 eV for LSF).

15.
J Mater Chem A Mater ; 10(6): 2973-2986, 2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35223041

RESUMO

Accelerating the oxygen reduction kinetics of solid oxide fuel cell (SOFC) cathodes is crucial to improve their efficiency and thus to provide the basis for an economically feasible application of intermediate temperature SOFCs. In this work, minor amounts of Pt were doped into lanthanum strontium ferrite (LSF) thin film electrodes to modulate the material's oxygen exchange performance. Surprisingly, Pt was found to be incorporated on the B-site of the perovskite electrode as non metallic Pt4+. The polarization resistance of LSF thin film electrodes with and without additional Pt surface doping was compared directly after film growth employing in situ electrochemical impedance spectroscopy inside a PLD chamber (i-PLD). This technique enables observation of the polarization resistance of pristine electrodes unaltered by degradation or any external contamination of the electrode surface. Moreover, growth of multi-layers of materials with different compositions on the very same single crystalline electrolyte substrate combined with in situ impedance measurements allow excellent comparability of different materials. Even a 5 nm layer of Pt doped LSF (1.5 at% Pt), i.e. a Pt loading of 80 ng cm-2, improved the polarization resistance by a factor of about 2.5. In addition, p(O2) and temperature dependent impedance measurements on both pure and Pt doped LSF were performed in situ and obtained similar activation energies and p(O2) dependence of the polarization resistance, which allow us to make far reaching mechanistic conclusions indicating that Pt4+ introduces additional active sites.

16.
Mater Adv ; 2(23): 7583-7619, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34913036

RESUMO

The interaction of light with solids has been of ever-growing interest for centuries, even more so since the quest for sustainable utilization and storage of solar energy became a major task for industry and research. With SrTiO3 being a model material for an extensive exploration of the defect chemistry of mixed conducting perovskite oxides, it has also been a vanguard in advancing the understanding of the interaction between light and the electronic and ionic structure of solids. In the course of these efforts, many phenomena occurring during or subsequent to the illumination of SrTiO3 have been investigated. Here, we give an overview of the numerous photoinduced effects in SrTiO3 and their inherent connection to electronic structure and defect chemistry. In more detail, advances in the fields of photoconductivity, photoluminescence, photovoltages, photochromism and photocatalysis are summarized and their underlying elemental processes are discussed. In light of recent research, this review also emphasizes the fundamental differences between illuminating SrTiO3 either at low temperatures (200 °C), where in addition to electronic processes, also photoionic interactions become relevant. A survey of the multitude of different processes shows that a profound and comprehensive understanding of the defect chemistry and its alteration under illumination is both vital to optimizing devices and to pushing the boundaries of research and advancing the fundamental understanding of solids.

17.
Nanoscale Adv ; 3(21): 6114-6127, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34765869

RESUMO

The interplay of structure, composition and electrical conductivity was investigated for Fe-doped SrTiO3 thin films prepared by pulsed laser deposition. Structural information was obtained by reciprocal space mapping while solution-based inductively-coupled plasma optical emission spectroscopy and positron annihilation lifetime spectroscopy were employed to reveal the cation composition and the predominant point defects of the thin films, respectively. A severe cation non-stoichiometry with Sr vacancies was found in films deposited from stoichiometric targets. The across plane electrical conductivity of such epitaxial films was studied in the temperature range of 250-720 °C by impedance spectroscopy. This revealed a pseudo-intrinsic electronic conductivity despite the substantial Fe acceptor doping, i.e. conductivities being several orders of magnitude lower than expected. Variation of PLD deposition parameters causes some changes of the cation stoichiometry, but the films still have conductivities much lower than expected. Targets with significant Sr excess (in the range of several percent) were employed to improve the cation stoichiometry in the films. The use of 7% Sr-excess targets resulted in near-stoichiometric films with conductivities close to the stoichiometric bulk counterpart. The measurements show that a fine-tuning of the film stoichiometry is required in order to obtain acceptor doped SrTiO3 thin films with bulk-like properties. One can conclude that, although reciprocal space maps give a first hint whether or not cation non-stoichiometry is present, conductivity measurements are more appropriate for assessing SrTiO3 film quality in terms of cation stoichiometry.

18.
J Mater Chem A Mater ; 9(27): 15226-15237, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34354833

RESUMO

Cubic Li7La3Zr2O12 (LLZO) garnets are among the most promising solid electrolytes for solid-state batteries with the potential to exceed conventional battery concepts in terms of energy density and safety. The electrochemical stability of LLZO is crucial for its application, however, controversial reports in the literature show that it is still an unsettled matter. Here, we investigate the electrochemical stability of LLZO single crystals by applying electric field stress via macro- and microscopic ionically blocking Au electrodes in ambient air. Induced material changes are subsequently probed using various locally resolved analysis techniques, including microelectrode electrochemical impedance spectroscopy (EIS), laser induced breakdown spectroscopy (LIBS), laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS), and microfocus X-ray diffraction (XRD). Our experiments indicate that LLZO decomposes at 4.1-4.3 V vs. Li+/Li, leading to the formation of Li-poor phases like La2Zr2O7 beneath the positively polarized electrode. The reaction is still on-going even after several days of polarization, indicating that no blocking interfacial layer is formed. The decomposition can be observed at elevated as well as room temperature and suggests that LLZO is truly not compatible with high voltage cathode materials.

19.
Anal Bioanal Chem ; 412(9): 2081-2088, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31332469

RESUMO

Filamentous fungi are well-established production hosts that feature a strong interconnection between morphology, physiology, and productivity. For penicillin production in Penicillium chrysogenum, industrial processes frequently favor a pellet morphology comprising compact hyphal agglomerates. Inherently these tightly packed entanglements lead to inactive, degrading sections within the pellet's core because of limitations. Optimal process design requires detailed knowledge of the nature of the limitations and localization of productive zones in the biomass, which is generally obtainable through modeling and complex analytical methods such as oxygen microelectrode and histological investigations. Methods that combine physiological and morphological insight are crucial yet scarce for filamentous fungi. In this study, we used time-of-flight secondary ion mass spectrometry in combination with oxygen and glucose tracer substrates, requiring little effort for sample preparation and measurement. Our method is capable of analyzing oxygen and substrate uptake in various morphological structures by the use of 18O as a tracer. In parallel, we can assess productive biomass regions through identification of penicillin mass fragments to simultaneously study oxygen diffusion, substrate incorporation, and productive biomass sections.


Assuntos
Penicillium chrysogenum/metabolismo , Biomassa , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Glucose/metabolismo , Oxigênio/metabolismo , Penicilinas/metabolismo , Penicillium chrysogenum/crescimento & desenvolvimento , Espectrometria de Massa de Íon Secundário
20.
ACS Appl Energy Mater ; 1(9): 4522-4535, 2018 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-30272051

RESUMO

The further development of solid oxide fuel and electrolysis cells (SOFC/SOEC) strongly relies on research activities dealing with electrode materials. Recent studies showed that under operating conditions many perovskite-type oxide electrodes are prone to changes of their surface composition, leading to severe changes of their electrochemical performance. This results in a large scatter of data in literature and complicates comparison of materials. Moreover, little information is available on the potentially excellent properties of surfaces immediately after preparation, that is, before any degradation by exposure to other gas compositions or temperature changes. Here, we introduce in situ impedance spectroscopy during pulsed laser deposition (IPLD) as a new method for electrochemical analysis of mixed ionic and electronic conducting (MIEC) thin films during growth. First, this approach can truly reveal the properties of as-prepared MIEC electrode materials, since it avoids any alterations of their surface between preparation and investigation. Second, the measurements during growth give information on the thickness dependence of film properties. This technique is applied to La0.6Sr0.4CoO3-δ (LSC), one of the most promising SOFC/SOEC oxygen electrode material. From the earliest stages of LSC film deposition on yttria-stabilized zirconia (YSZ) to a fully grown thin film of 100 nm thickness, data are gained on the oxygen exchange kinetics and the defect chemistry of LSC. A remarkable reproducibility is found in repeated film growth experiments, not only for the bulk related chemical capacitance but also for the surface related polarization resistance (±10%). Polarization resistances of as-prepared LSC films are extraordinarily low (2.0 Ω cm2 in 40 µbar O2 at 600 °C). LSC films on YSZ and on La0.95Sr0.05Ga0.95Mg0.05O3-δ (LSGM) single crystals exhibit significantly different electrochemical properties, possibly associated with the tensile strain of LSC on LSGM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...