Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EJNMMI Phys ; 10(1): 22, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36959477

RESUMO

PURPOSE: Cardiac myxoma (CM), the most common cardiac tumor in adults, accounts for 50-75% of benign cardiac tumors. The diagnosis of CM is often elusive, especially in young stroke survivors and transthoracic echocardiography (TTE) is the initial technique for the differential diagnostics of CM. Less invasive cardiac computed tomography (CT) and magnetic resonance imaging (MRI) are not available for the majority of cardiac patients. Here, a robust imaging approach, ortho-Positronium (o-Ps) imaging, is presented to determine cardiac myxoma extracted from patients undergoing urgent cardiac surgery due to unexpected atrial masses. We aimed to assess if the o-Ps atom, produced copiously in intramolecular voids during the PET imaging, serves as a biomarker for CM diagnosing. METHODS: Six perioperative CM and normal (adipose) tissue samples from patients, with primary diagnosis confirmed by the histopathology examination, were examined using positron annihilation lifetime spectroscopy (PALS) and micro-CT. Additionally, cell cultures and confocal microscopy techniques were used to picture cell morphology and origin. RESULTS: We observed significant shortening in the mean o-Ps lifetime in tumor with compare to normal tissues: an average value of 1.92(02) ns and 2.72(05) ns for CM and the adipose tissue, respectively. Microscopic differences between tumor samples, confirmed in histopathology examination and micro-CT, did not influenced the major positronium imaging results. CONCLUSIONS: Our findings, combined with o-Ps lifetime analysis, revealed the novel emerging positronium imaging marker (o-PS) for cardiovascular imaging. This method opens the new perspective to facilitate the quantitative in vivo assessment of intracardiac masses on a molecular (nanoscale) level.

2.
Sci Adv ; 7(42): eabh4394, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34644101

RESUMO

In vivo assessment of cancer and precise location of altered tissues at initial stages of molecular disorders are important diagnostic challenges. Positronium is copiously formed in the free molecular spaces in the patient's body during positron emission tomography (PET). The positronium properties vary according to the size of inter- and intramolecular voids and the concentration of molecules in them such as, e.g., molecular oxygen, O2; therefore, positronium imaging may provide information about disease progression during the initial stages of molecular alterations. Current PET systems do not allow acquisition of positronium images. This study presents a new method that enables positronium imaging by simultaneous registration of annihilation photons and deexcitation photons from pharmaceuticals labeled with radionuclides. The first positronium imaging of a phantom built from cardiac myxoma and adipose tissue is demonstrated. It is anticipated that positronium imaging will substantially enhance the specificity of PET diagnostics.

3.
Micron ; 137: 102917, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32693343

RESUMO

Three-dimensional (3D) spheroids mimic important properties of tumors and may soon become a reasonable substitute for animal models and human tissue, eliminating numerous problems related to in vivo and ex vivo experiments and pre-clinical drug trials. Currently, various imaging methods including X-ray microtomography (micro-CT), exist but their spatial resolution is limited. Here, we visualized and provided a morphological analysis of spheroid cell cultures using micro-CT and compared it to that of confocal microscopy. An approach is proposed that can potentially open new diagnostic opportunities to determine the morphology of cancer cells cultured in 3D structures instead of using actual tumors. Spheroids were formed from human melanoma cell lines WM266-4 and WM115 seeded at different cell densities using the hanging drop method. Micro-CT analysis of spheroid showed that spheroid size and shape differed depending on the cell line, initial cell number, and duration of culture. The melanoma cell lines used in this study can successfully be cultured as 3D spheroids and used to substitute human and animal models in pre-clinical studies. The micro-CT allows for high-resolution visualization of the spheroids structure.


Assuntos
Técnicas de Cultura de Células/métodos , Neoplasias/ultraestrutura , Esferoides Celulares/ultraestrutura , Microtomografia por Raio-X/métodos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Ensaios de Triagem em Larga Escala , Humanos , Melanoma
4.
PLoS One ; 12(11): e0186728, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29176834

RESUMO

A novel plastic scintillator is developed for the application in the digital positron emission tomography (PET). The novelty of the concept lies in application of the 2-(4-styrylphenyl)benzoxazole as a wavelength shifter. The substance has not been used as scintillator dopant before. A dopant shifts the scintillation spectrum towards longer wavelengths making it more suitable for applications in scintillators of long strips geometry and light detection with digital silicon photomultipliers. These features open perspectives for the construction of the cost-effective and MRI-compatible PET scanner with the large field of view. In this article we present the synthesis method and characterize performance of the elaborated scintillator by determining its light emission spectrum, light emission efficiency, rising and decay time of the scintillation pulses and resulting timing resolution when applied in the positron emission tomography. The optimal concentration of the novel wavelength shifter was established by maximizing the light output and it was found to be 0.05 ‰ for cuboidal scintillator with dimensions of 14 mm x 14 mm x 20 mm.


Assuntos
Benzoxazóis/química , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Contagem de Cintilação/instrumentação , Estirenos/química , Tomografia , Luz , Peso Molecular , Polimerização , Espectrometria de Fluorescência , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...