Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Immunol ; 211(6): 981-993, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37493438

RESUMO

Current vaccine efforts to combat SARS-CoV-2 are focused on the whole spike protein administered as mRNA, viral vector, or protein subunit. However, the SARS-CoV-2 receptor-binding domain (RBD) is the immunodominant portion of the spike protein, accounting for 90% of serum neutralizing activity. In this study, we constructed several versions of RBD and together with aluminum hydroxide or DDA (dimethyldioctadecylammonium bromide)/TDB (d-(+)-trehalose 6,6'-dibehenate) adjuvant evaluated immunogenicity in mice. We generated human angiotensin-converting enzyme 2 knock-in mice to evaluate vaccine efficacy in vivo following viral challenge. We found that 1) subdomain (SD)1 was essential for the RBD to elicit maximal immunogenicity; 2) RBDSD1 produced in mammalian HEK cells elicited better immunogenicity than did protein produced in insect or yeast cells; 3) RBDSD1 combined with the CD4 Th1 adjuvant DDA/TDB produced higher neutralizing Ab responses and stronger CD4 T cell responses than did aluminum hydroxide; 4) addition of monomeric human Fc receptor to RBDSD1 (RBDSD1Fc) significantly enhanced immunogenicity and neutralizing Ab titers; 5) the Beta version of RBDSD1Fc provided a broad range of cross-neutralization to multiple antigenic variants of concern, including Omicron; and 6) the Beta version of RBDSD1Fc with DDA/TDB provided complete protection against virus challenge in the knock-in mouse model. Thus, we have identified an optimized RBD-based subunit vaccine suitable for clinical trials.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , SARS-CoV-2 , Vacinas contra COVID-19 , Hidróxido de Alumínio , Glicoproteína da Espícula de Coronavírus , Vacinas de Subunidades Antigênicas , Anticorpos Antivirais , Anticorpos Neutralizantes , Mamíferos
3.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35705312

RESUMO

BACKGROUND: Recent studies have demonstrated that T cells can induce vasodilation in a choline-acetyltransferase dependent manner, leading to an increase in T cell migration to infected tissues in response to viral infection, but its role in cancer is unclear. Choline acetyltransferase catalyzes the production of acetylcholine from choline and acetyl-CoA, however, acetylcholine is challenging to quantify due to its extremely short half-life while choline is stable. This study aims to correlate serum choline levels in patients with advanced solid tumors receiving pembrolizumab with treatment outcomes. METHODS: Blood samples were collected at baseline and at week 7 (pre-cycle 3) in patients treated with pembrolizumab in the INvestigator-initiated Phase 2 Study of Pembrolizumab Immunological Response Evaluation phase II trial (NCT02644369). Samples were analyzed for choline and circulating tumor DNA (ctDNA). Multivariable Cox models were used to assess the association between choline and overall survival (OS) and progression-free survival (PFS) when including ΔctDNAC3 (the change in ctDNA from baseline to cycle 3), cohort, PD-L1 expression and tumor mutation burden (TMB). An independent validation cohort from the LIBERATE study (NCT03702309) included patients on early phase trials treated with a PD-1 inhibitor. RESULTS: A total of 106 pts were included in the analysis. With a median follow-up of 12.6 months, median PFS and OS were 1.9 and 13.7 months, respectively. An increase in serum choline level at week 7 compared with baseline (ΔcholineC3) in 81 pts was significantly associated with a better PFS (aHR 0.48, 95% CI 0.28 to 0.83, p=0.009), and a trend toward a better OS (aHR 0.64, 95% CI 0.37 to 1.12, p=0.119). A combination of ΔctDNAC3 and ΔcholineC3 was prognostic for both OS and PFS. Multivariable analyses show ΔcholineC3 was a prognostic factor for PFS independent of ΔctDNAC3, cohort, PD-L1 and TMB. In the independent validation cohort (n=51), an increase in serum choline at cycle 2 was associated with a trend to improved PFS. CONCLUSIONS: This is the first exploratory report of serum choline levels in pan-cancer patients receiving pembrolizumab. The association between improved PFS and ΔcholineC3 suggests a possible role for the cholinergic system in the regulation of antitumor immunity. Further pre-clinical and clinical studies are required to validate this finding. TRIAL REGISTRATION NUMBER: NCT03702309.


Assuntos
Antineoplásicos Imunológicos , DNA Tumoral Circulante , Neoplasias , Acetilcolina/uso terapêutico , Anticorpos Monoclonais Humanizados , Antineoplásicos Imunológicos/efeitos adversos , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/genética , Colina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Intervalo Livre de Progressão
4.
Nat Rev Drug Discov ; 20(12): 899-919, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33686237

RESUMO

The success of checkpoint inhibitors has accelerated the clinical implementation of a vast mosaic of single agents and combination immunotherapies. However, the lack of clinical translation for a number of immunotherapies as monotherapies or in combination with checkpoint inhibitors has clarified that new strategies must be employed to advance the field. The next chapter of immunotherapy should examine the immuno-oncology therapeutic failures, and consider the complexity of immune cell-cancer cell interactions to better design more effective anticancer drugs. Herein, we briefly review the history of immunotherapy and checkpoint blockade, highlighting important clinical failures. We discuss the critical aspects - beyond T cell co-receptors - of immune processes within the tumour microenvironment (TME) that may serve as avenues along which new therapeutic strategies in immuno-oncology can be forged. Emerging insights into tumour biology suggest that successful future therapeutics will focus on two key factors: rescuing T cell homing and dysfunction in the TME, and reappropriating mononuclear phagocyte function for TME inflammatory remodelling. New drugs will need to consider the complex cell networks that exist within tumours and among cancer types.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Humanos , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Imunoterapia/tendências , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
5.
Cell Death Differ ; 27(12): 3209-3225, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33037393

RESUMO

COVID-19 is caused by SARS-CoV-2 infection and characterized by diverse clinical symptoms. Type I interferon (IFN-I) production is impaired and severe cases lead to ARDS and widespread coagulopathy. We propose that COVID-19 pathophysiology is initiated by SARS-CoV-2 gene products, the NSP1 and ORF6 proteins, leading to a catastrophic cascade of failures. These viral components induce signal transducer and activator of transcription 1 (STAT1) dysfunction and compensatory hyperactivation of STAT3. In SARS-CoV-2-infected cells, a positive feedback loop established between STAT3 and plasminogen activator inhibitor-1 (PAI-1) may lead to an escalating cycle of activation in common with the interdependent signaling networks affected in COVID-19. Specifically, PAI-1 upregulation leads to coagulopathy characterized by intravascular thrombi. Overproduced PAI-1 binds to TLR4 on macrophages, inducing the secretion of proinflammatory cytokines and chemokines. The recruitment and subsequent activation of innate immune cells within an infected lung drives the destruction of lung architecture, which leads to the infection of regional endothelial cells and produces a hypoxic environment that further stimulates PAI-1 production. Acute lung injury also activates EGFR and leads to the phosphorylation of STAT3. COVID-19 patients' autopsies frequently exhibit diffuse alveolar damage (DAD) and increased hyaluronan (HA) production which also leads to higher levels of PAI-1. COVID-19 risk factors are consistent with this scenario, as PAI-1 levels are increased in hypertension, obesity, diabetes, cardiovascular diseases, and old age. We discuss the possibility of using various approved drugs, or drugs currently in clinical development, to treat COVID-19. This perspective suggests to enhance STAT1 activity and/or inhibit STAT3 functions for COVID-19 treatment. This might derail the escalating STAT3/PAI-1 cycle central to COVID-19.


Assuntos
COVID-19/patologia , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais/fisiologia , COVID-19/metabolismo , COVID-19/virologia , Quimiocinas/metabolismo , Citocinas/metabolismo , Receptores ErbB/metabolismo , Humanos , Interferon Tipo I/metabolismo , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Fatores de Transcrição STAT/química , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
7.
Nat Commun ; 10(1): 2678, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31213601

RESUMO

Myeloid cells contribute to tumor progression, but how the constellation of receptors they express regulates their functions within the tumor microenvironment (TME) is unclear. We demonstrate that Fcmr (Toso), the putative receptor for soluble IgM, modulates myeloid cell responses to cancer. In a syngeneic melanoma model, Fcmr ablation in myeloid cells suppressed tumor growth and extended mouse survival. Fcmr deficiency increased myeloid cell population density in this malignancy and enhanced anti-tumor immunity. Single-cell RNA sequencing of Fcmr-deficient tumor-associated mononuclear phagocytes revealed a unique subset with enhanced antigen processing/presenting properties. Conversely, Fcmr activity negatively regulated the activation and migratory capacity of myeloid cells in vivo, and T cell activation by bone marrow-derived dendritic cells in vitro. Therapeutic targeting of Fcmr during oncogenesis decreased tumor growth when used as a single agent or in combination with anti-PD-1. Thus, Fcmr regulates myeloid cell activation within the TME and may be a potential therapeutic target.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas de Transporte/metabolismo , Melanoma Experimental/imunologia , Proteínas de Membrana/metabolismo , Monócitos/imunologia , Neoplasias Cutâneas/imunologia , Animais , Apresentação de Antígeno/efeitos dos fármacos , Apresentação de Antígeno/imunologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinogênese/efeitos dos fármacos , Carcinogênese/imunologia , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Linhagem Celular Tumoral/transplante , Movimento Celular/efeitos dos fármacos , Movimento Celular/imunologia , Feminino , Ativação Linfocitária/imunologia , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/mortalidade , Melanoma Experimental/patologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/metabolismo , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Análise de Sobrevida , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
8.
Proc Natl Acad Sci U S A ; 116(9): 3604-3613, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30733286

RESUMO

Cancer cells have higher reactive oxygen species (ROS) than normal cells, due to genetic and metabolic alterations. An emerging scenario is that cancer cells increase ROS to activate protumorigenic signaling while activating antioxidant pathways to maintain redox homeostasis. Here we show that, in basal-like and BRCA1-related breast cancer (BC), ROS levels correlate with the expression and activity of the transcription factor aryl hydrocarbon receptor (AhR). Mechanistically, ROS triggers AhR nuclear accumulation and activation to promote the transcription of both antioxidant enzymes and the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AREG). In a mouse model of BRCA1-related BC, cancer-associated AhR and AREG control tumor growth and production of chemokines to attract monocytes and activate proangiogenic function of macrophages in the tumor microenvironment. Interestingly, the expression of these chemokines as well as infiltration of monocyte-lineage cells (monocyte and macrophages) positively correlated with ROS levels in basal-like BC. These data support the existence of a coordinated link between cancer-intrinsic ROS regulation and the features of tumor microenvironment. Therapeutically, chemical inhibition of AhR activity sensitizes human BC models to Erlotinib, a selective EGFR tyrosine kinase inhibitor, suggesting a promising combinatorial anticancer effect of AhR and EGFR pathway inhibition. Thus, AhR represents an attractive target to inhibit redox homeostasis and modulate the tumor promoting microenvironment of basal-like and BRCA1-associated BC.


Assuntos
Anfirregulina/genética , Proteína BRCA1/genética , Neoplasias da Mama/genética , Receptores de Hidrocarboneto Arílico/genética , Adulto , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Receptores ErbB/genética , Cloridrato de Erlotinib/administração & dosagem , Feminino , Regulação Neoplásica da Expressão Gênica , Homeostase/genética , Humanos , Camundongos , Pessoa de Meia-Idade , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral/genética
9.
Science ; 363(6427): 639-644, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30733420

RESUMO

Although widely studied as a neurotransmitter, T cell-derived acetylcholine (ACh) has recently been reported to play an important role in regulating immunity. However, the role of lymphocyte-derived ACh in viral infection is unknown. Here, we show that the enzyme choline acetyltransferase (ChAT), which catalyzes the rate-limiting step of ACh production, is robustly induced in both CD4+ and CD8+ T cells during lymphocytic choriomeningitis virus (LCMV) infection in an IL-21-dependent manner. Deletion of Chat within the T cell compartment in mice ablated vasodilation in response to infection, impaired the migration of antiviral T cells into infected tissues, and ultimately compromised the control of chronic LCMV clone 13 infection. Our results reveal a genetic proof of function for ChAT in T cells during viral infection and identify a pathway of T cell migration that sustains antiviral immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Colina O-Acetiltransferase/imunologia , Interleucinas/imunologia , Coriomeningite Linfocítica/imunologia , Animais , Linfócitos T CD4-Positivos/enzimologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/enzimologia , Movimento Celular , Colina O-Acetiltransferase/genética , Feminino , Ativação Linfocitária , Vírus da Coriomeningite Linfocítica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Vasodilatação
10.
Physiol Biochem Zool ; 88(2): 183-94, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25730273

RESUMO

Multiple components of the immune system are modulated by environmental factors, including exposure to stressors. In particular, chronic stressors can impair development of the immune system, leading to alterations in immune function in adulthood. While these effects have been well established in mammals, less is known about how developmental stress modulates immunity in nonmammalian species. We determined the long-term effects of exposure to early-life stressors on immunity in song sparrows including the swelling response to phytohemagglutinin (PHA) and several measures of constitutive innate immunity. Song sparrows were reared in captivity from 3 d of age and exposed to control conditions, food restriction, or corticosterone (CORT) treatment. Males exposed to food restriction or CORT treatment had less swelling of the wing web in response to PHA than control males; however, neither treatment affected the swelling response to PHA in females. The treatments also had sex-specific effects on constitutive innate immune function. Specifically, CORT-treated males had lower antimicrobial capacity toward a strain of the bacterium E. coli but higher antimicrobial activity toward a strain of the fungus Candida albicans compared to food-restricted or control males. In contrast, neither treatment affected constitutive innate immunity in females. These results suggest that male and female song sparrows may differ in how they allocate resources to development of the immune system when reared in stressful or food-limited conditions.


Assuntos
Pardais/imunologia , Animais , Candida albicans , Corticosterona/farmacologia , Escherichia coli , Feminino , Privação de Alimentos , Imunidade Inata , Masculino , Fito-Hemaglutininas/imunologia , Fatores Sexuais , Pardais/microbiologia , Estresse Fisiológico
11.
Integr Comp Biol ; 54(4): 568-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24951504

RESUMO

Sexual-selection theory posits that ornaments and displays can reflect a signaler's condition, which in turn is affected both by recent and developmental conditions. Moreover, developmental conditions can induce correlations between sexually selected and other traits if both types of traits exhibit developmental phenotypic plasticity in response to stressors. Thus, sexually selected traits may reflect recent and/or developmental characteristics of signalers. Here, we review data on the relationships between birdsong, a sexually selected trait, and developmental and current condition of birds from a long-term study of a population of song sparrows (Melospiza melodia). Field studies of free-living birds indicate that the complexity of a male's songs, a permanent trait, reflects the size of a song-control region of his brain (HVC), and is correlated with body size and several parameters of immunity, specifically investment in protective proteins. However, the performance of a male's songs, a dynamic trait, is not correlated to immune investment. Complexity of song is correlated with the glucocorticoid stress-response, and in some years response to stress predicts overwinter survival. Experimental manipulations have revealed that stressors in early life impair development of HVC, but that HVC recovers in size by adulthood. These manipulations result in impaired song-complexity and song-learning, but not song-performance. Experimental developmental stressors also affect growth, endocrine physiology, metabolism, and immune-function, often in a sex-specific manner. Combined, these studies suggest that song-complexity provides reliable information about early developmental experience, and about other traits that have critical developmental periods. Birdsong thus provides a multi-faceted sexually selected trait that may be an indicator both of developmental and recent conditions.


Assuntos
Pardais/crescimento & desenvolvimento , Pardais/fisiologia , Estresse Fisiológico/fisiologia , Vocalização Animal/fisiologia , Animais , Masculino
12.
Am Nat ; 183(5): 660-70, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24739198

RESUMO

In short-lived animals, innate immunity is an important component of fitness and quality. Although receivers cannot generally assess a signaler's immune function directly, sexually selected displays such as birdsong may reflect past or current condition. We investigated the degree to which song complexity and consistency, thought to reflect condition over different developmental timescales, predict multiple aspects of innate immunity in male song sparrows (Melospiza melodia). We also investigated correlations among immune measures. Noncellular components of innate immunity (soluble blood proteins including natural antibody and other protective proteins) were negatively related to cellular (phagocytosis-based) components, suggesting trade-offs within innate immune protection. This pattern underscores the risk of inferring "immunocompetence" from a single metric. Song complexity, a permanent trait in this species, was positively related to noncellular relative to cellular immune components and may thus provide information as to the singer's innate immune strategy (investment in noncellular vs. cellular activity). Such a relationship could arise through shared timing of song learning and antibody repertoire development in early life. Singing consistency, thought to track variation in current condition and measured at both whole-song and syllable scales, did not predict any immune measures. Developmental timing of signals thus appears to influence their information content.


Assuntos
Imunidade Inata , Pardais/fisiologia , Vocalização Animal/fisiologia , Animais , Masculino , Ontário , Pardais/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...