Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 123(6): 2426-2436, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32401126

RESUMO

In this study, the effect of extracellular pH on glutamatergic synaptic transmission was examined in mechanically dissociated rat hippocampal CA3 pyramidal neurons using a whole-cell patch-clamp technique under voltage-clamp conditions. Native synaptic boutons were isolated without using any enzymes, using a so-called "synapse bouton preparation," and preserved for the electrical stimulation of single boutons. Both the frequency and amplitude of spontaneous excitatory postsynaptic currents (sEPSCs) were found to decrease and increase in response to modest acidic (~pH 6.5) and basic (~pH 8.5) solutions, respectively. These changes in sEPSC frequency were not affected by the addition of TTX but completely disappeared by successive addition of Cd2+. However, changes in sEPSC amplitude induced by acidic and basic extracellular solutions were not affected by the addition of neither TTX nor Cd2+. The glutamate-induced whole-cell currents were decreased and increased by acidic and basic solutions, respectively. Acidic pH also decreased the amplitude and increased the failure rate (Rf) and paired-pulse rate (PPR) of glutamatergic electrically evoked excitatory postsynaptic currents (eEPSCs), while a basic pH increased the amplitude and decreased both the Rf and PPR of eEPSCs. The kinetics of the currents were not affected by changes in pH. Acidic and basic solutions decreased and increased voltage-gated Ca2+ but not Na+ channel currents in the dentate gyrus granule cell bodies. Our results indicate that extracellular pH modulates excitatory transmission via both pre- and postsynaptic sites, with the presynaptic modulation correlated to changes in voltage-gated Ca2+ channel currents.NEW & NOTEWORTHY The effects of external pH changes on spontaneous, miniature, and evoked excitatory synaptic transmission in CA3 hippocampal synapses were examined using the isolated nerve bouton preparation, which allowed for the accurate regulation of extracellular pH at the synapses. Acidification generally reduced transmission, partly via effects on presynaptic Ca2+ channel currents, while alkalization generally enhanced transmission. Both pre- and postsynaptic sites contributed to these effects.


Assuntos
Região CA3 Hipocampal/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Concentração de Íons de Hidrogênio , Terminações Pré-Sinápticas/fisiologia , Células Piramidais/fisiologia , Animais , Região CA3 Hipocampal/química , Feminino , Ácido Glutâmico/metabolismo , Masculino , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/química , Células Piramidais/química , Ratos , Ratos Wistar
2.
Brain Res Bull ; 157: 51-60, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31987927

RESUMO

Effects of xenon (Xe) on whole-cell currents induced by glutamate (Glu), its three ionotropic subtypes, and GABA, as well as on the fast synaptic glutamatergic and GABAergic transmissions, were studied in the mechanically dissociated "synapse bouton preparation" of rat spinal sacral dorsal commissural nucleus (SDCN) neurons. This technique evaluates pure single or multi-synapse responses from native functional nerve endings and enables us to quantify how Xe influences pre- and postsynaptic transmissions accurately. Effects of Xe on glutamate (Glu)-, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-, kainate (KA)- and N-methyl-d-aspartate (NMDA)- and GABAA receptor-mediated whole-cell currents were investigated by the conventional whole-cell patch configuration. Excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs) were measured as spontaneous (s) and evoked (e) EPSCs and IPSCs. Evoked synaptic currents were elicited by paired-pulse focal electric stimulation. Xe decreased Glu, AMPA, KA, and NMDA receptor-mediated whole-cell currents but did not change GABAA receptor-mediated whole-cell currents. Xe decreased the frequency and amplitude but did not affect the 1/e decay time of the glutamatergic sEPSCs. Xe decreased the frequency without affecting the amplitude and 1/e decay time of GABAergic sIPSCs. Xe decreased the amplitude and increased the failure rate (Rf) and paired-pulse ratio (PPR) without altering the 1/e decay time of both eEPSC and eIPSC, suggesting that Xe acts on the presynaptic side of the synapse. The presynaptic inhibition was greater in eEPSCs than in eIPSCs. We conclude that Xe decreases glutamatergic and GABAergic spontaneous and evoked transmissions at the presynaptic level. The glutamatergic presynaptic responses are the main target of anesthesia-induced neuronal responses. In contrast, GABAergic responses minimally contribute to Xe anesthesia.


Assuntos
Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Ácido Glutâmico/farmacologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Xenônio/farmacologia , Ácido gama-Aminobutírico/farmacologia , Anestésicos Inalatórios/farmacologia , Animais , Neurônios/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos Wistar , Transmissão Sináptica/fisiologia
3.
Proc Natl Acad Sci U S A ; 109(43): 17693-8, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23054835

RESUMO

Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease caused by the expansion of a polyglutamine tract in the Ca(v)2.1 voltage-gated calcium channel. To elucidate how the expanded polyglutamine tract in this plasma membrane protein causes the disease, we created a unique knockin mouse model that modestly overexpressed the mutant transcripts under the control of an endogenous promoter (MPI-118Q). MPI-118Q mice faithfully recapitulated many features of SCA6, including selective Purkinje cell degeneration. Surprisingly, analysis of inclusion formation in the mutant Purkinje cells indicated the lysosomal localization of accumulated mutant Ca(v)2.1 channels in the absence of autophagic response. The lack of cathepsin B, a major lysosomal cysteine proteinase, exacerbated the loss of Purkinje cells and was accompanied by an acceleration of inclusion formation in this model. Thus, the pathogenic mechanism of SCA6 involves the endolysosomal degradation pathway, and unique pathological features of this model further illustrate the pivotal role of protein context in the pathogenesis of polyglutamine diseases.


Assuntos
Modelos Animais de Doenças , Lisossomos/fisiologia , Células de Purkinje/patologia , Ataxias Espinocerebelares/patologia , Animais , Autofagia , Camundongos , Camundongos Transgênicos
4.
J Neurosci ; 31(22): 8001-12, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21632922

RESUMO

Presynaptic elements of axons, in which action potentials (APs) cause release of neurotransmitter, are sites of high densities and complex interactions of proteins. We report that the presence of K(v)3 channels in addition to K(v)1 at glutamatergic mossy fiber boutons (MFBs) in rat hippocampal slices considerably limits the number of fast, voltage-activated potassium channels necessary to achieve basal presynaptic AP repolarization. The ∼ 10-fold higher repolarization efficacy per K(v)3 channel compared with presynaptic K(v)1 results from a higher steady-state availability at rest, a better recruitment by the presynaptic AP as a result of faster activation kinetics, and a larger single-channel conductance. Large-conductance calcium- and voltage-activated potassium channels (BK(Ca)) at MFBs give rise to a fast activating/fast inactivating and a slowly activating/sustained K(+) current component during long depolarizations. However, BK(Ca) contribute to MFB-AP repolarization only after presynaptic K(v)3 have been disabled. The calcium chelators EGTA and BAPTA are equally effective in preventing BK(Ca) activation, suggesting that BK(Ca) are not organized in nanodomain complexes with presynaptic voltage-gated calcium channels. Thus, the functional properties of K(v)3 channels at MFBs are tuned to both promote brevity of presynaptic APs limiting glutamate release and at the same time keep surface protein density of potassium channels low. Presynaptic BK(Ca) channels are restricted to limit additional increases of the AP half-duration in case of K(v)3 hypofunction, because rapid membrane repolarization by K(v)3 combined with distant calcium sources prevent BK(Ca) activation during basal APs.


Assuntos
Potenciais de Ação/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Canais de Potássio/fisiologia , Terminações Pré-Sinápticas/fisiologia , Canais de Potássio Shaw/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Região CA3 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/fisiologia , Cálcio/metabolismo , Quelantes/farmacologia , Ácido Egtázico/análogos & derivados , Ácido Egtázico/farmacologia , Feminino , Técnicas In Vitro , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Masculino , Fibras Musgosas Hipocampais/efeitos dos fármacos , Técnicas de Patch-Clamp/métodos , Células Piramidais/fisiologia , Ratos , Ratos Wistar , Superfamília Shaker de Canais de Potássio/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
5.
Biochem Biophys Res Commun ; 393(4): 587-91, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20152805

RESUMO

Presynaptic glycine receptors (GlyRs) have been implicated in the regulation of glutamatergic synaptic transmission. Here, we characterized presynaptic GlyR-mediated currents by patch-clamp recording from mossy fiber boutons (MFBs) in rat hippocampal slices. In MFBs, focal puff-application of glycine-evoked chloride currents that were blocked by the GlyR antagonist strychnine. Their amplitudes declined substantially during postnatal development, from a mean conductance per MFB of approximately 600 pS in young to approximately 130 pS in adult animals. Single-channel analysis revealed multiple conductance states between approximately 20 and approximately 120 pS, consistent with expression of both homo- and hetero-oligomeric GlyRs. Accordingly, estimated GlyRs densities varied between 8-17 per young, and 1-3 per adult, MFB. Our results demonstrate that functional presynaptic GlyRs are present on hippocampal mossy fiber terminals and suggest a role of these receptors in the regulation of glutamate release during the development of the mossy fiber--CA3 synapse.


Assuntos
Fibras Musgosas Hipocampais/crescimento & desenvolvimento , Receptores de Glicina/fisiologia , Receptores Pré-Sinápticos/fisiologia , Animais , Glicina/metabolismo , Glicina/farmacologia , Glicina/fisiologia , Fibras Musgosas Hipocampais/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de Glicina/metabolismo , Receptores Pré-Sinápticos/metabolismo , Estricnina/farmacologia
6.
EMBO J ; 26(17): 3888-99, 2007 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-17690689

RESUMO

Collybistin (Cb) is a brain-specific guanine nucleotide exchange factor that has been implicated in plasma membrane targeting of the postsynaptic scaffolding protein gephyrin found at glycinergic and GABAergic synapses. Here we show that Cb-deficient mice display a region-specific loss of postsynaptic gephyrin and GABA(A) receptor clusters in the hippocampus and the basolateral amygdala. Cb deficiency is accompanied by significant changes in hippocampal synaptic plasticity, due to reduced dendritic GABAergic inhibition. Long-term potentiation is enhanced, and long-term depression reduced, in Cb-deficient hippocampal slices. Consistent with the anatomical and electrophysiological findings, the animals show increased levels of anxiety and impaired spatial learning. Together, our data indicate that Cb is essential for gephyrin-dependent clustering of a specific set of GABA(A) receptors, but not required for glycine receptor postsynaptic localization.


Assuntos
Proteínas de Transporte/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Hipocampo/fisiologia , Proteínas de Membrana/fisiologia , Plasticidade Neuronal , Receptores de GABA-A/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Tonsila do Cerebelo/fisiologia , Animais , Fatores de Troca do Nucleotídeo Guanina/genética , Potenciação de Longa Duração , Depressão Sináptica de Longo Prazo , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Atividade Motora , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/fisiologia , Receptores de Glicina/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho
7.
Cereb Cortex ; 17(3): 653-60, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16627857

RESUMO

Benzodiazepines act mainly at postsynaptic gamma-aminobutyric acid type A (GABA(A)) receptors. In rat neocortical layer V pyramidal neurons, we found that midazolam (MDZ), a benzodiazepine, increases the frequency of GABAergic miniature inhibitory postsynaptic currents (mIPSCs) via insertion of alpha7 nicotinic acetylcholine receptors (nAChRs) at presynaptic GABAergic boutons. Although nicotine alone had no effect, MDZ plus nicotine dramatically increased mIPSC frequency. Neostigmine, an acetylcholinesterase inhibitor, mimicked the actions of nicotine. MDZ increased the number of alpha-bungarotoxin-bound boutons that were blocked by protein kinase C (PKC) inhibitors, as revealed by confocal imaging of a neuron-synaptic bouton preparation. Thus, MDZ may induce membrane translocation of alpha7 nAChRs on GABAergic boutons via activation of PKC, enabling endogenous acetylcholine to increase GABA release. The above actions seem unique to MDZ because neither other benzodiazepines (diazepam and flunitrazepam) nor zolpidem had this effect. The findings reveal both a novel cholinergic modulatory mechanism affecting GABAergic transmission and a novel action of some general anesthetics.


Assuntos
Moduladores GABAérgicos/farmacologia , Midazolam/farmacologia , Neocórtex/efeitos dos fármacos , Neocórtex/metabolismo , Receptores Nicotínicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Benzodiazepinas/farmacologia , Fibras Colinérgicas/efeitos dos fármacos , Fibras Colinérgicas/metabolismo , Inibidores da Colinesterase/farmacologia , Neostigmina/farmacologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Proteína Quinase C/metabolismo , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Receptor Nicotínico de Acetilcolina alfa7
8.
Cereb Cortex ; 17(1): 138-48, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16452638

RESUMO

The cortical migration process depends on a number of trophic factors and on the activation of different voltage- and ligand-gated channels. We investigated the role of gamma-aminobutyric acid (GABA) type A receptors in the neuronal migration process of the newborn rat parietal cortex in vivo and in vitro. Local in vivo application of the GABA-A antagonist bicuculline methiodide (BMI) or the agonist muscimol via cortical surface Elvax implants induced prominent alterations in the cortical architecture when compared with untreated or sham-operated controls. BMI- and muscimol-treated animals revealed heterotopic cell clusters in the upper layers and a complete loss of the cortical lamination in the region underlying the Elvax implant. Immunocytochemical staining for glial fibrillary acidic protein, N-methyl-D-aspartate receptors, and GABA demonstrated that heterotopia was not provoked by glial proliferation and confirmed the presence of both glutamatergic and GABAergic neurons. In organotypic neocortical slices from embryonic day 18-19 embryos, application of BMI and to a lesser extent also muscimol induced an increase in the migration speed and an accumulation of neurons in the upper cortical layers. Spontaneous intracellular calcium ([Ca2+]i) oscillations in neocortical slices from newborn rats were abolished by BMI (5 and 20 microM) and muscimol (1 and 10 microM), indicating that both compounds interfere with [Ca2+]i signaling required for normal neuronal migration. Electrophysiological recordings from migrating neurons in newborn rat neocortical slices indicate that long-term application of muscimol causes a pronounced reduction (1 microM muscimol) or blockade (10 microM) in the responsiveness of postsynaptic GABA-A receptors due to a pronounced receptor desensitization. Our results indicate that modulation of GABA-A receptors by compounds acting as agonists or antagonists may profoundly influence the neuronal migration process in the developing cerebral cortex.


Assuntos
Neocórtex/fisiologia , Neurônios/fisiologia , Receptores de GABA-A/fisiologia , Animais , Animais Recém-Nascidos/fisiologia , Antimetabólitos , Bicuculina/farmacologia , Bromodesoxiuridina , Cálcio/metabolismo , Cálcio/fisiologia , Movimento Celular , Implantes de Medicamento , Eletrofisiologia , Agonistas GABAérgicos/farmacologia , Antagonistas GABAérgicos/farmacologia , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica , Técnicas In Vitro , Cinética , Muscimol/farmacologia , Neocórtex/citologia , Técnicas de Patch-Clamp , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
9.
J Neurochem ; 91(3): 657-66, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15485496

RESUMO

The mechanisms underlying cyclic AMP modulation of action potential-dependent and -independent (spontaneous) release of glycine from terminals synapsing onto sacral dorsal commissural nucleus neurons of lamina X were studied in spinal cord slices using conventional patch-clamp recordings. 3-Isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor, and forskolin increased the amplitude of evoked inhibitory postsynaptic currents (eIPSCs) in a sensitive manner to protein kinase A (PKA) inhibition (with KT-5720). Direct activation (with adenosine 3',5'-cyclic-monophosphothioate, Sp-isomer) and inhibition (with adenosine 3',5'-cyclic-monophosphothioate, Rp-isomer) of PKA increased and decreased the eIPSC amplitude, respectively. Paired pulse experiments and direct injection of PKA inhibitor fragment 6-22 amide (PKI(6-22)) into the recording neuron revealed that these effects on eIPSC amplitude occurred presynaptically, indicating that evoked glycine release is regulated by presynaptic cAMP via changes in PKA activity. Increasing cAMP also increased spontaneous release of glycine, causing an increased frequency of miniature IPSCs (mIPSCs). In contrast to the effects on evoked release, this response was not solely mediated via PKA, as it was not occluded by PKA inhibition, and both direct inhibition and direct activation of PKA actually enhanced mIPSC frequency. Direct inhibition of cAMP (with SQ 22536) did, however, reduce mIPSC frequency. These results suggest cAMP modulation of evoked and spontaneous release involves different presynaptic mechanisms and proteins.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Glicina/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transdução de Sinais/fisiologia , Medula Espinal/metabolismo , Animais , Colforsina/farmacologia , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Inibição Neural/efeitos dos fármacos , Inibição Neural/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/fisiologia , Técnicas de Patch-Clamp , Diester Fosfórico Hidrolases/efeitos dos fármacos , Terminações Pré-Sinápticas/efeitos dos fármacos , Ratos , Ratos Wistar , Região Sacrococcígea , Medula Espinal/efeitos dos fármacos
10.
J Physiol ; 560(Pt 2): 469-78, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15308681

RESUMO

Corelease of glycine and GABA from the single synaptic terminal (synaptic bouton) is well accepted in immature rat spinal cord and brainstem. However, it raises the question of how glycine and GABA are accumulated in the same synaptic vesicles and coreleased. To address this issue, spontaneous miniature inhibitory postsynaptic currents (mIPSCs) and focally evoked IPSCs (eIPSCs) mediated via a single synapse were recorded from synaptic bouton preparations of the rat immature sacral dorsal commissural nucleus (SDCN) neurones by whole-cell patch recording. Focal stimulation of a single synaptic bouton revealed that three different quantal releases occur from a single synaptic bouton: i.e. pure glycine, pure GABA, and mixed. Prolonged treatment with bafilomycin A1, a vacuolar-type H+/ATPase inhibitor, to the SDCN neurone greatly suppressed frequency and amplitude of the mIPSCs. During washing out of bafilomycin A1, complete recovery in the amplitude of glycinergic mIPSCs was observed, while that of GABAergic and mixed mIPSCs was incomplete. These observations indicate that three types of vesicles coexist in single synaptic terminals, and that refilling of glycine into the synaptic vesicle predominantes over GABA after pretreatment with bafilomycin A1 in immature rats. This could be explained by the decrease in the cytosolic concentration of GABA, or by the presence of subtypes of vesicular inhibitory amino acid transporter in the synaptic vesicle membrane.


Assuntos
Animais Recém-Nascidos , Inibição Neural/fisiologia , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/fisiologia , Medula Espinal/fisiologia , Transmissão Sináptica , Animais , Eletrofisiologia , Inibidores Enzimáticos/farmacologia , Glicina/metabolismo , Macrolídeos/farmacologia , Neurônios/fisiologia , Terminações Pré-Sinápticas/metabolismo , ATPases Translocadoras de Prótons/antagonistas & inibidores , Ratos , Ratos Wistar , Região Sacrococcígea , Medula Espinal/citologia , Vesículas Sinápticas/metabolismo , Ácido gama-Aminobutírico/metabolismo
11.
J Physiol ; 551(Pt 1): 263-76, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12815184

RESUMO

The transduction mechanisms underlying presynaptic GABAB receptor-mediated inhibition of transmitter release have been characterized for a variety of synapses in the central nervous system (CNS). These studies have suggested a range of transduction mechanisms, including a role for second messengers such as protein kinases A (PKA) and C (PKC). In the present study, we have examined the intracellular signalling pathways underlying baclofen-induced inhibition of GABA release from terminals synapsing onto rat basalis of Meynert neurons using patch-clamp recordings. Baclofen, a selective GABAB receptor agonist, reversibly decreased both evoked and spontaneous, miniature, GABAergic inhibitory postsynaptic currents (eIPSCs and mIPSCs, respectively). Such baclofen actions were completely abolished by CGP55845A, a selective GABAB receptor antagonist, and by staurosporine, a non-selective PKA and PKC inhibitor. The mIPSC frequency was still decreased by baclofen even in the presence of 4 AP, a K+ channel blocker, and Cd2+, a voltage-dependent calcium channel blocker. Pharmacological activation or inhibition of PKC activity affected basal GABA release and mildly affected the response to baclofen. Inhibition of the cAMP/PKA cascade also affected basal GABA release and, in a subset of neurons, occluded the effects of baclofen, suggesting that the GABAB receptor-mediated inhibitory action on GABA release was mediated via decreases in PKA activity. In addition, PKA inhibition occluded the effects of PKC modulation on both basal GABA release and on the response to baclofen. Our results characterize the transduction pathway of baclofen at these nucleus basalis of Maynert (nBM) synapses and show, for the first time, some cross-talk between the cAMP/PKA and PKC pathways in mammalian presynaptic nerve terminals.


Assuntos
Adenina/análogos & derivados , Núcleo Basal de Meynert/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Terminações Pré-Sinápticas/fisiologia , Proteína Quinase C/fisiologia , Receptores de GABA-B/fisiologia , Transdução de Sinais/fisiologia , Sinapses/fisiologia , Adenina/farmacologia , Animais , Baclofeno/farmacologia , Núcleo Basal de Meynert/citologia , Canais de Cálcio/fisiologia , AMP Cíclico/antagonistas & inibidores , Condutividade Elétrica , Inibidores Enzimáticos/farmacologia , Agonistas GABAérgicos/farmacologia , Proteínas de Ligação ao GTP/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Canais de Potássio/fisiologia , Ratos , Ratos Wistar , Ácido gama-Aminobutírico/metabolismo
12.
Clin Calcium ; 12(6): 804-9, 2002 Jun.
Artigo em Japonês | MEDLINE | ID: mdl-15775370

RESUMO

Neurons possess multiple types of voltage-dependent calcium channels. These channels are classified as either low-voltage-activated (LVA/T-type) or high-voltage-activated (HVA) consisting of L, N, P, Q and R subtypes. T-type Ca channels can be opened by small depolarization that are under the threshold for action potential generation. These T-type Ca channels may be involved in the sub threshold depolarizations that underlies neuronal bursting activities in neurons. Such burst firing might originate in the postsynaptic membrane of the neuronal dendrites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...