Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurochem Int ; 180: 105858, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39271020

RESUMO

High salt (HS) intake induces hypertension and cognitive impairment. Preventive strategies include against dietary supplements. Soybean lecithin is a widely used phospholipid supplement. Lysolecithin is important in cell signaling, digestion, and absorption. This study aimed to investigate the effects of lysophosphatidylcholine containing >70% of the total phospholipids (LPC70), on hypertension and cognitive impairment induced in mice by HS intake. Mice were provided with HS solution (2% NaCl in drinking water) with or without LPC70 for 12 weeks. Blood pressure, cognitive function, and inflammatory response of intestine were determined. Hypertension and impaired object recognition memory induced by HS intake were implicated with increased inducible nitric oxide synthase in the small intestine and tau hyperphosphorylation in the prefrontal cortex. LPC70 treatment prevented cognitive impairment by suppressing inducible nitric oxide synthase and tau hyperphosphorylation. LPC70 may be valuable as a functional food component in preventing HS-induced cognitive impairment.

2.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39201535

RESUMO

In patients with Parkinson's disease (PD), dopamine replacement therapy with dopamine D2/D3 receptor agonists induces impairments in decision-making, including pathological gambling. The neurobiological mechanisms underlying these adverse effects remain elusive. Here, in a mouse model of PD, we investigated the effects of the dopamine D3 receptor (D3R)-preferring agonist pramipexole (PPX) on decision-making. PD model mice were generated using a bilateral injection of the toxin 6-hydroxydopamine into the dorsolateral striatum. Subsequent treatment with PPX increased disadvantageous choices characterized by a high-risk/high-reward in the touchscreen-based Iowa Gambling Task. This effect was blocked by treatment with the selective D3R antagonist PG-01037. In model mice treated with PPX, the number of c-Fos-positive cells was increased in the external globus pallidus (GPe), indicating dysregulation of the indirect pathway in the corticothalamic-basal ganglia circuitry. In accordance, chemogenetic inhibition of the GPe restored normal c-Fos activation and rescued PPX-induced disadvantageous choices. These findings demonstrate that the hyperactivation of GPe neurons in the indirect pathway impairs decision-making in PD model mice. The results provide a candidate mechanism and therapeutic target for pathological gambling observed during D2/D3 receptor pharmacotherapy in PD patients.


Assuntos
Tomada de Decisões , Modelos Animais de Doenças , Globo Pálido , Doença de Parkinson , Pramipexol , Receptores de Dopamina D3 , Animais , Pramipexol/farmacologia , Camundongos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Tomada de Decisões/efeitos dos fármacos , Globo Pálido/metabolismo , Globo Pálido/efeitos dos fármacos , Masculino , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/agonistas , Agonistas de Dopamina/farmacologia , Benzotiazóis/farmacologia , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-fos/metabolismo
3.
Br J Pharmacol ; 180(18): 2393-2411, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37076133

RESUMO

BACKGROUND AND PURPOSE: High salt (HS) intake has been associated with hypertension and cognitive impairment. It is well known that the angiotensin II (Ang II)-AT1 receptor and prostaglandin E2 (PGE2)-EP1 receptor systems are involved in hypertension and neurotoxicity. However, the involvement of these systems in HS-mediated hypertension and emotional and cognitive impairments remains unclear. EXPERIMENTAL APPROACH: Mice were loaded with HS solution (2% NaCl drinking water) for 12 weeks, and blood pressure was monitored. Subsequently, effects of HS intake on emotional and cognitive function and tau phosphorylation in the prefrontal cortex (PFC) and hippocampus (HIP) were investigated. The involvement of Ang II-AT1 and PGE2-EP1 systems in HS-induced hypertension and neuronal and behavioural impairments was examined by treatment with losartan, an AT1 receptor blocker (ARB), or EP1 gene knockout. KEY RESULTS: We demonstrate that hypertension and impaired social behaviour and object recognition memory following HS intake may be associated with tau hyperphosphorylation, decreased phosphorylation of Ca2+ /calmodulin-dependent protein kinase II (CaMKII), and postsynaptic density protein 95 (PSD95) expression in the PFC and HIP of mice. These changes were blocked by pharmacological treatment with losartan or EP1 receptor gene knockout. CONCLUSIONS AND IMPLICATIONS: Our findings suggest that the interaction of Ang II-AT1 receptor and PGE2-EP1 receptor systems could be novel therapeutic targets for hypertension-induced cognitive impairment.


Assuntos
Disfunção Cognitiva , Hipertensão , Camundongos , Animais , Losartan/farmacologia , Cloreto de Sódio , Dinoprostona/metabolismo , Angiotensina II/farmacologia , Angiotensina II/metabolismo , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Hipertensão/metabolismo , Cloreto de Sódio na Dieta , Receptor Tipo 1 de Angiotensina/metabolismo
4.
Biochem Biophys Res Commun ; 629: 142-151, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116377

RESUMO

Phencyclidine (PCP) causes mental symptoms that closely resemble schizophrenia through the inhibition of the glutamatergic system. The kynurenine (KYN) pathway (KP) generates metabolites that modulate glutamatergic systems such as kynurenic acid (KA), quinolinic acid (QA), and xanthurenic acid (XA). Kynurenine 3-monooxygenase (KMO) metabolizes KYN to 3-hydroxykynurenine (3-HK), an upstream metabolite of QA and XA. Clinical studies have reported lower KMO mRNA and higher KA levels in the postmortem brains of patients with schizophrenia and exacerbation of symptoms in schizophrenia by PCP. However, the association between KMO deficiency and PCP remains elusive. Here, we demonstrated that a non-effective dose of PCP induced impairment of prepulse inhibition (PPI) in KMO KO mice. KA levels were increased in the prefrontal cortex (PFC) and hippocampus (HIP) of KMO KO mice, but 3-HK levels were decreased. In wild-type C57BL/6 N mice, the PPI impairment induced by PCP is exacerbated by KA, while attenuated by 3-HK, QA and XA. Taken together, KMO KO mice were vulnerable to the PPI impairment induced by PCP through an increase in KA and a decrease in 3-HK, suggesting that an increase in the ratio of KA to 3-HK (QA and XA) may play an important role in the pathophysiology of schizophrenia.


Assuntos
Quinurenina 3-Mono-Oxigenase , Cinurenina , Animais , Ácido Cinurênico/metabolismo , Cinurenina/metabolismo , Quinurenina 3-Mono-Oxigenase/genética , Quinurenina 3-Mono-Oxigenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fenciclidina , Inibição Pré-Pulso , Ácido Quinolínico/metabolismo , RNA Mensageiro
5.
Neurochem Res ; 47(9): 2865-2879, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35871433

RESUMO

Brain derived neurotrophic factor (BDNF) is one of the most abundant neurotrophic factors, and its deficits are involved in the pathogenesis of major depressive disorders (MDD). Loureirin C (Lou C) is a compound derived from red resin extracted from the stems of Chinese dragon's blood. Xanthoceraside (Xan) is a triterpenoid saponin extracted from the husks of Xanthoceras sorbifolia Bunge. These compounds have neuroprotective effects through upregulation of BDNF. The present study aimed to evaluate whether Lou C and Xan attenuate abnormal behaviors induced by chronic corticosterone (CORT) administration. CORT was administered subcutaneously to mice for 3 weeks, and Lou C and Xan, dispensed orally once a day during the last 2 weeks of CORT administration. Chronic CORT administration induced abnormal behaviors such as prolonged starting latency in the open field test, decreased social interaction time in the social interaction test and prolonged latency to eat in the novelty suppressed feeding test. Chronic CORT administration decreased the expression levels of BDNF and the phosphorylation of protein kinase B (Akt), mammalian target of rapamycin (mTOR), and the cAMP response element binding protein (CREB) in the prefrontal cortex. Lou C and Xan dose-dependently prevented the abnormal behaviors and decreased the expression levels of BDNF and in phosphorylation of AKT, mTOR, and CREB in the prefrontal cortex of CORT mice. These results suggest that Lou C and Xan could be attractive candidates for pharmacotherapy of MDD at least in part, given their propensity to increase BDNF expression and phosphorylation of AKT, mTOR, and CREB.


Assuntos
Transtorno Depressivo Maior , Saponinas , Triterpenos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão/tratamento farmacológico , Transtorno Depressivo Maior/metabolismo , Regulação para Baixo , Hipocampo/metabolismo , Camundongos , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Saponinas/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Triterpenos/farmacologia
6.
Biomed Pharmacother ; 150: 113022, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35483195

RESUMO

GABAA receptors containing α6 subunits (α6GABAARs) in the cerebellum have -been implicated in schizophrenia. It was reported that the GABA synthesizing enzymes were downregulated whereas α6GABAARs were upregulated in postmortem cerebellar tissues of patients with schizophrenia and in a rat model induced by chronic phencyclidine (PCP). We have previously demonstrated that pyrazoloquinolinone Compound 6, an α6GABAAR-highly selective positive allosteric modulator (PAM), can rescue the disrupted prepulse inhibition (PPI) induced by methamphetamine (METH), an animal model mimicking the sensorimotor gating deficit based on the hyper-dopaminergic hypothesis of schizophrenia. Here, we demonstrate that not only Compound 6, but also its structural analogues, LAU463 and LAU159, with similarly high α6GABAAR selectivity and their respective deuterated derivatives (DK-I-56-1, DK-I-58-1 and DK-I-59-1) can rescue METH-induced PPI disruption. Besides, Compound 6 and DK-I-56-I can also rescue the PPI disruption induced by acute administration of PCP, an animal model based on the hypo-glutamatergic hypothesis of schizophrenia. Importantly, Compound 6 and DK-I-56-I, at doses not affecting spontaneous locomotor activity, can also rescue impairments of social interaction and novel object recognition in mice induced by chronic PCP treatments. At similar doses, Compound 6 did not induce sedation but significantly suppressed METH-induced hyperlocomotion. Thus, α6GABAAR-selective PAMs can rescue not only disrupted PPI but also hyperlocomotion, social withdrawal, and cognitive impairment, in both METH- and PCP-induced animal models mimicking schizophrenia, suggesting that they are a potential novel therapy for the three core symptoms, i.e. positive symptoms, negative symptoms, and cognitive impairment, of schizophrenia.


Assuntos
Metanfetamina , Esquizofrenia , Animais , Modelos Animais de Doenças , Humanos , Metanfetamina/efeitos adversos , Camundongos , Fenciclidina/efeitos adversos , Ratos , Receptores de GABA-A , Esquizofrenia/induzido quimicamente , Esquizofrenia/tratamento farmacológico , Ácido gama-Aminobutírico/uso terapêutico
7.
Behav Brain Res ; 405: 113191, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33607168

RESUMO

Tryptophan (TRP) is metabolized via the kynurenine (KYN) pathway, which is related to the pathogenesis of major depressive disorder (MDD). Kynurenine 3-monooxygenase (KMO) is a pivotal enzyme in the metabolism of KYN to 3-hydroxykynurenine. In rodents, KMO deficiency induces a depression-like behavior and increases the levels of kynurenic acid (KA), a KYN metabolite formed by kynurenine aminotransferases (KATs). KA antagonizes α7 nicotinic acetylcholine receptor (α7nAChR). Here, we investigated the involvement of KA in depression-like behavior in KMO knockout (KO) mice. KYN, KA, and anthranilic acid but not TRP or 3-hydroxyanthranilic acid were elevated in the prefrontal cortex of KMO KO mice. The mRNA levels of KAT1 and α7nAChR but not KAT2-4, α4nAChR, or ß2nAChR were elevated in the prefrontal cortex of KMO KO mice. Nicotine blocked increase in locomotor activity, decrease in social interaction time, and prolonged immobility in a forced swimming test, but it did not decrease sucrose preference in the KMO KO mice. Methyllycaconitine (an α7nAChR antagonist) antagonized the effect of nicotine on decreased social interaction time and prolonged immobility in the forced swimming test, but not increased locomotor activity. Galantamine (an α7nAChR allosteric agonist) blocked the increased locomotor activity and prolonged immobility in the forced swimming test, but not the decreased social interaction time in the KMO KO mice. In conclusion, elevation of KA levels contributes to depression-like behaviors in KMO KO mice by α7nAChR antagonism. The ameliorating effects of nicotine and galantamine on depression-like behaviors in KMO KO mice are associated with the activation of α7nAChR.


Assuntos
Comportamento Animal/fisiologia , Depressão/metabolismo , Ácido Cinurênico/metabolismo , Quinurenina 3-Mono-Oxigenase/deficiência , Agonistas Nicotínicos/farmacologia , Antagonistas Nicotínicos/farmacologia , Córtex Pré-Frontal/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Aconitina/análogos & derivados , Aconitina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nicotina/farmacologia , Córtex Pré-Frontal/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/antagonistas & inibidores
8.
J Neurochem ; 157(3): 642-655, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-32275776

RESUMO

Successful completion of daily activities relies on the ability to select the relevant features of the environment for memory and recall. Disruption to these processes can lead to various disorders, such as attention-deficit hyperactivity disorder (ADHD). Dopamine is a neurotransmitter implicated in the regulation of several processes, including attention. In addition to the higher-order brain function, dopamine is implicated in the regulation of adult neurogenesis. Previously, we generated mice lacking Shati, an N-acetyltransferase-8-like protein on a C57BL/6J genetic background (Shati/Nat8l-/- ). These mice showed a series of changes in the dopamine system and ADHD-like behavioral phenotypes. Therefore, we hypothesized that deficiency of Shati/Nat8l would affect neurogenesis and attentional behavior in mice. We found aberrant morphology of neurons and impaired neurogenesis in the dentate gyrus of Shati/Nat8l-/- mice. Additionally, research has suggested that impaired neurogenesis might be because of the reduction of dopamine in the hippocampus. Galantamine (GAL) attenuated the attentional impairment observed in the object-based attention test via increasing the dopamine release in the hippocampus of Shati/Nat8l-/- mice. The α7 nicotinic acetylcholine receptor antagonist, methyllycaconitine, and dopamine D1 receptor antagonist, SCH23390, blocked the ameliorating effect of GAL on attentional impairment in Shati/Nat8l-/- mice. These results suggest that the ameliorating effect of GAL on Shati/Nat8l-/- attentional impairment is associated with activation of D1 receptors following increased dopamine release in the hippocampus via α7 nicotinic acetylcholine receptor. In summary, Shati/Nat8l is important in both morphogenesis and neurogenesis in the dentate gyrus and attention, possible via modulation of dopaminergic transmission. Cover Image for this issue: https://doi.org/10.1111/jnc.15061.


Assuntos
Acetiltransferases/deficiência , Acetiltransferases/genética , Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Giro Denteado/patologia , Neurônios Dopaminérgicos/patologia , Neurogênese/genética , Animais , Atenção/efeitos dos fármacos , Benzazepinas/farmacologia , Espinhas Dendríticas/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Giro Denteado/metabolismo , Dopamina/metabolismo , Dopamina/fisiologia , Antagonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Feminino , Galantamina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas Nicotínicos/farmacologia , Nootrópicos/farmacologia , Transmissão Sináptica/efeitos dos fármacos
9.
Mol Brain ; 13(1): 171, 2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317607

RESUMO

Disturbances of attention are a common behavioral feature associated with neuropsychiatric disorders with largely unknown underlying causes. We previously developed an object-based attention test (OBAT) as a simple and practical method for evaluating attention in mice. Since its establishment, the test has become a popular method for assessing attention and related underlying mechanisms in various mouse models. However, the underlying neuronal network involved in this test has yet to be studied. The purpose of this study was to identify the principal brain regions activated in the OBAT. Accordingly, C57BL/6J mice were subjected to the OBAT and thereafter prepared for immunohistochemical quantification of c-Fos, an immediate early gene that is frequently used as a marker of neuronal activity, in 13 different brain regions. The number of c-Fos-positive cells was significantly higher in the prefrontal cortex (PFC), dorsomedial striatum (DMS), and dentate gyrus (DG) in the test group as compared to the control group. The neuronal activation of these brain regions during the OBAT indicates that these brain regions are necessary for the regulation of attention in this test. This was supported by excitotoxic lesioning of these brain regions, leading to impaired attention without causing locomotor dysfunction. This study is one of the first attempts to analyze the brain regions that regulate attention in the OBAT. These findings provide an initial insight into the role of these brain regions and ideas for studying the underlying neural and molecular mechanisms.


Assuntos
Atenção/fisiologia , Corpo Estriado/fisiologia , Giro Denteado/fisiologia , Córtex Pré-Frontal/fisiologia , Animais , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo
10.
Br J Pharmacol ; 177(14): 3210-3224, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32133633

RESUMO

BACKGROUND AND PURPOSE: Hispidulin is a flavonoid isolated from Clerodendrum inerme that was found to inhibit intractable motor tics. Previously, we found that hispidulin attenuates hyperlocomotion and the disrupted prepulse inhibition induced by methamphetamine and N-methyl-d-aspartate (NMDA) receptor antagonists, two phenotypes of schizophrenia resembling positive symptoms. Hispidulin can inhibit COMT, a dopamine-metabolizing enzyme in the prefrontal cortex (PFC) that is important for social interaction. Here, we investigated whether hispidulin would affect social withdrawal, one of the negative symptoms of schizophrenia. EXPERIMENTAL APPROACH: We examined whether acute administration of hispidulin would attenuate social withdrawal in two mice models, juvenile isolated disrupted-in-schizophrenia-1 mutant (mutDISC1) mice and chronic phencyclidine (PCP)-treated naïve mice. KEY RESULTS: In chronic PCP-treated mice, hispidulin (10 mg·kg-1 , i.p.) attenuated social withdrawal similar to that observed with dopamine D1 receptor antagonist (SCH-23390, 0.02 mg·kg-1 , i.p.) and was mimicked by the selective COMT inhibitor, OR-486 (10 mg·kg-1 , i.p.). Hispidulin increased extracellular dopamine levels in the PFC of chronic PCP-treated mice. In isolated mutDISC1 mice, hispidulin also reversed social withdrawal. In both models, intra-PFC microinjection of a D1 agonist (SKF-81297: 10 nmol/mouse/bilateral) reversed the impairment of Ser897 phosphorylation at the GluN1 subunit of NMDA receptors, suggesting the association between GluN1 Ser897 -phosphorylation and D1 activation in the PFC exits in both models. CONCLUSIONS AND IMPLICATIONS: Hispidulin attenuated social withdrawal by activating D1 receptors indirectly through elevated dopamine levels in the PFC by COMT inhibition. This nature of hispidulin suggests that it a potential novel therapeutic candidate for the treatment of negative symptoms in schizophrenia.


Assuntos
Flavonas , Esquizofrenia , Animais , Flavonas/farmacologia , Camundongos , Fenciclidina/farmacologia , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/tratamento farmacológico , Isolamento Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA