Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes Cells ; 27(6): 409-420, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35430776

RESUMO

The RNA polymerase II-associated factor 1 complex (PAF1C) is a protein complex that consists of LEO1, RTF1, PAF1, CDC73, and CTR9, and has been shown to be involved in RNA polymerase II-mediated transcriptional and chromatin regulation. Although it has been shown to regulate a variety of biological processes, the precise role of the PAF1C during germ line development has not been clarified. In this study, we found that reduction in the function of the PAF1C components, LEO-1, RTFO-1, PAFO-1, CDC-73, and CTR-9, in Caenorhabditis elegans affects oogenesis. Defects in oogenesis were also confirmed using an oocyte maturation marker, OMA-1::GFP. While four to five OMA-1::GFP-positive oocytes were observed in wild-type animals, their numbers were significantly decreased in pafo-1 mutant and leo-1(RNAi), pafo-1(RNAi), and cdc-73(RNAi) animals. Expression of a functional PAFO-1::mCherry transgene in the germline significantly rescued the oogenesis-defective phenotype of the pafo-1 mutants, suggesting that expression of the PAF1C in germ cells is required for oogenesis. Notably, overexpression of OMA-1::GFP partially rescued the oogenesis defect in the pafo-1 mutants. Based on our findings, we propose that the PAF1C promotes oogenesis in a cell-autonomous manner by positively regulating the expression of genes involved in oocyte maturation.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Núcleo Celular/metabolismo , Oogênese/genética , RNA Polimerase II/metabolismo
2.
Genes Genomics ; 43(5): 553-565, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33740234

RESUMO

BACKGROUND: Histone deacetylase (HDAC)-1, a Class-I HDAC family member, forms three types of complexes, the nucleosome remodeling deacetylase, Sin3, and CoREST complexes with the specific corepressor components chromodomain-helicase-DNA-binding protein 3 (Mi2/CHD-3), Sin3, and REST corepressor 1 (RCOR1), respectively, in humans. OBJECTIVE: To elucidate the functional relationships among the three transcriptional corepressors during embryogenesis. METHODS: The activities of HDA-1, LET-418, SIN-3, and SPR-1, the homologs of HDAC-1, Mi2, Sin3, and RCOR1 in Caenorhabditis elegans during embryogenesis were investigated through measurement of relative mRNA expression levels and embryonic lethality given either gene knockdown or deletion. Additionally, the terminal phenotypes of each knockdown and mutant embryo were observed using a differential-interference contrast microscope. Finally, the functional relationships among the three corepressors were examined through genetic interactions and transcriptome analyses. RESULTS: Here, we report that each of the corepressors LET-418, SIN-3, and SPR-1 are expressed and have essential roles in C. elegans embryonic development. Our terminal phenotype observations of single mutants further implied that LET-418, SIN-3, and SPR-1 play similar roles in promoting advancement to the middle and late embryonic stages. Combined analysis of genetic interactions and gene ontology of these corepressors indicate a prominent overlapping role among SIN-3, SPR-1, and LET-418 and between SIN-3 and SPR-1. CONCLUSION: Our findings suggest that the class-I HDAC-1 corepressors LET-418, SIN-3, and SPR-1 may cooperatively regulate the expression levels of some genes during C. elegans embryogenesis or may have some similar roles but functioning independently within a specific cell.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo Correpressor Histona Desacetilase e Sin3/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ligação a DNA/genética , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Complexo Correpressor Histona Desacetilase e Sin3/genética , Transcriptoma
3.
Int J Mol Sci ; 20(24)2019 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-31847093

RESUMO

Glycans are involved in various metabolic processes via the functions of glycosyltransferases and glycoside hydrolases. Analysing the evolution of these enzymes is essential for improving the understanding of glycan metabolism and function. Based on our previous study of glycosyltransferases, we performed a genome-wide analysis of whole human glycoside hydrolases using the UniProt, BRENDA, CAZy and KEGG databases. Using cluster analysis, 319 human glycoside hydrolases were classified into four clusters based on their similarity to enzymes conserved in chordates or metazoans (Class 1), metazoans (Class 2), metazoans and plants (Class 3) and eukaryotes (Class 4). The eukaryote and metazoan clusters included N- and O-glycoside hydrolases, respectively. The significant abundance of disordered regions within the most conserved cluster indicated a role for disordered regions in the evolution of glycoside hydrolases. These results suggest that the biological diversity of multicellular organisms is related to the acquisition of N- and O-linked glycans.


Assuntos
Simulação por Computador , Bases de Dados Genéticas , Glicosídeo Hidrolases/genética , Estudo de Associação Genômica Ampla , Glicosídeo Hidrolases/classificação , Humanos
4.
PLoS One ; 14(9): e0215187, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31504044

RESUMO

Obtaining a comprehensive understanding of the gene regulatory networks, or gene cascades, involved in cell fate determination and cell lineage segregation in Caenorhabditis elegans is a long-standing challenge. Although RNA-sequencing (RNA-Seq) is a promising technique to resolve these questions, the bioinformatics tools to identify associated gene cascades from RNA-Seq data remain inadequate. To overcome these limitations, we developed Gene Cascade Finder (GCF) as a novel tool for building gene cascades by comparison of mutant and wild-type RNA-Seq data along with integrated information of protein-protein interactions, expression timing, and domains. Application of GCF to RNA-Seq data confirmed that SPN-4 and MEX-3 regulate the canonical Wnt pathway during embryonic development. Moreover, lin-35, hsp-3, and gpa-12 were found to be involved in MEX-1-dependent neurogenesis, and MEX-3 was found to control the gene cascade promoting neurogenesis through lin-35 and apl-1. Thus, GCF could be a useful tool for building gene cascades from RNA-Seq data.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Redes Reguladoras de Genes , Genômica/métodos , Mapas de Interação de Proteínas , Software , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...