Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38201808

RESUMO

A novel and environmentally friendly recycling approach for carbon-fiber-reinforced plastics (CFRP) was studied using not only nitric acid (HNO3) but also our chosen alkaline, sodium hydrogen carbonate (NaHCO3). The CFRP specimen was first immersed into 8 M HNO3 at 80 °C for 8 h, and then into 0.1 M NaHCO3 at 80 °C for 15 min to obtain resin-free recycled carbon fiber (rCFs). Using this new recycling method, it was shown that the recycling time was reduced to 8.3 h, whereas it originally took 24 h, as reported previously. It was shown that immersing the CFRP specimen into NaHCO3 caused a transesterification reaction with the remaining resin residue on the CF surface, which led to dissolving the resin into the NaHCO3 aqueous solution all at once. Additionally, NaHCO3 produced carbon dioxide gas while reacting with the resin residue; the CO2 gas physically helped removing the resin from the CF's surface. Moreover, evaluating the physical properties of the rCFs demonstrated an improvement in fiber strength and adhesiveness to resin. Therefore, this recycling method was shown to be effective in recovering high-quality rCFs in a relatively short recycling period.

2.
Nanoscale Adv ; 1(12): 4955-4964, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36133145

RESUMO

Developing a mass production method for graphene is essential for practical usage of this remarkable material. Direct exfoliation of graphite in a liquid is a promising approach for production of high quality graphene. However, this technique has three huge obstacles to be solved; limitation of solvent, low yield and low quality (i.e., multilayer graphene with a small size). Here, we found that soluble graphite produced by mechanochemical reaction with salts overcomes the above three drawbacks. Soluble graphite was exfoliated into monolayer graphene with more than 10% yield in five minutes of sonication. The modified graphite was easily exfoliated in a low-boiling point solvent such as acetone, alcohol and water without the aid of a surfactant. Molecular simulation revealed that the salt is adsorbed to the active carbon at the graphite edge. In the case of weak acid salts, the original bonding nature between the alkali ion and the base molecule is retained after the reaction. Thus, alkali metals are easily dissociated in a polar solvent, leading to negative charge of graphene, enabling the exfoliation of graphite in low boiling point solvents. The approach proposed here opens up a new door to practical usage of the attractive 2D material.

3.
Ultrasonics ; 82: 178-187, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28869837

RESUMO

Since thermosetting resins have excellent resistance to chemicals, fiber reinforced plastics composed of such resins and reinforcement fibers are widely used as construction materials for equipment in chemical plants. Such equipment is usually used for several decades under severe corrosive conditions so that failure due to degradation may result. One of the degradation behaviors in thermosetting resins under chemical solutions is "corrosion-layer-forming" degradation. In this type of degradation, surface resins in contact with a solution corrode, and some of them remain asa corrosion layer on the pristine part. It is difficult to precisely measure the thickness of the pristine part of such degradation type materials by conventional pulse-echo ultrasonic testing, because the sound velocity depends on the degree of corrosion of the polymeric material. In addition, the ultrasonic reflection interface between the pristine part and the corrosion layer is obscure. Thus, we propose a pitch-catch method using a pair of normal and angle probes to measure four parameters: the thicknesses of the pristine part and the corrosion layer, and their respective sound velocities. The validity of the proposed method was confirmed by measuring a two-layer sample and a sample including corroded parts. The results demonstrate that the pitch-catch method can successfully measure the four parameters and evaluate the residual thickness of the pristine part in the corrosion-layer-forming sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...