Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 311-312: 245-256, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31505222

RESUMO

We developed a lipid nanoparticle formulation (LNPK15) to deliver siRNA to a tumor for target gene knock down. LNPK15 is highly PEGylated with 3.3% 1,2-distearoyl-sn-glycero-3-phosphatidylethanolamine-N-(polyethylene glycol-2000) (PEG-DSPE) and shows a long duration: the half-lives of siRNA in LNPK15 were 15.2 and 27.0h in mice and monkeys, respectively. Although LNPK15 encapsulating KRAS-targeting siRNA (LNPK15/KRAS) had very weak KRAS gene knock down activity in MIA PaCa-2 cells in vitro, LNPK15/KRAS showed a strong anti-tumor efficacy in MIA PaCa-2 tumor xenograft mice after intravenous administration at 5mg/kg twice weekly. KRAS mRNA and protein knock down was observed in tumor tissue, suggesting on-target anti-tumor efficacy. In order to elucidate the in vitro-in vivo discrepancy, we performed ex vivo knock down assay using serum samples obtained after intravenous administration of LNPK15/KRAS to mice and monkeys. The collected samples were added to MIA PaCa-2 cells, and KRAS gene knock down was evaluated after a 24-h incubation period. The knock down efficacy was weak (≈20%) with serum samples at initial sampling point (2h), and it became much stronger (∼90%) with serum samples at later time points. Lipid composition of LNPK15 in the serum samples was also investigated. Among the five lipids incorporated in LNPK15, PEG-DSPE was degraded more rapidly than siRNA and the other lipids in both mice and monkeys. In vitro lipase treatment of LNPK15/KRAS also hydrolyzed PEG-DSPE and enhanced knock down activity. From these results, it was concluded that LNPK15 acquires increased knock down activity after undergoing PEG-DSPE hydrolysis in vivo, and that is the key mechanism to achieve both long circulation and potent knock down efficiency. We also proposed an in vitro assay system using lipase for quality control of LNP to ensure biological activity.


Assuntos
Nanopartículas/administração & dosagem , Neoplasias/terapia , Fosfatidiletanolaminas/administração & dosagem , Polietilenoglicóis/administração & dosagem , Proteínas Proto-Oncogênicas p21(ras)/genética , RNA Interferente Pequeno/administração & dosagem , Animais , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Humanos , Macaca fascicularis , Masculino , Camundongos Endogâmicos C57BL , Camundongos SCID , Neoplasias/genética , Neoplasias/metabolismo , Fosfatidiletanolaminas/farmacocinética , Polietilenoglicóis/farmacocinética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , RNA Interferente Pequeno/farmacocinética
2.
ACS Med Chem Lett ; 10(5): 749-753, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31097994

RESUMO

We report a potent cationic lipid, SST-02 ((3-hydroxylpropyl)dilinoleylamine), which possesses a simple chemical structure and is synthesized just in one step. Cationic lipids are key components of siRNA-lipid nanoparticles (LNP), which may serve as potential therapeutic agents for various diseases. For a decade, chemists have given enhanced potency and new functions to cationic lipids along with structural complexity. In this study, we conducted a medicinal chemistry campaign pursuing chemical simplicity and found that even dilinoleylmethylamine (SST-01) and methylpalmitoleylamine could be used for the in vitro and in vivo siRNA delivery. Further optimization revealed that a hydroxyl group boosted potency, and SST-02 showed an ID50 of 0.02 mg/kg in the factor VII (FVII) model. Rats administered with 3 mg/kg of SST-02 LNP did not show changes in body weight, blood chemistry, or hematological parameters, while the AST level decreased at a dose of 5 mg/kg. The use of SST-02 avoids a lengthy synthetic route and may thus decrease the future cost of nucleic acid therapeutics.

3.
J Control Release ; 294: 185-194, 2019 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-30529725

RESUMO

In vivo biodistribution analyses, especially in tumors, of nucleic acids delivered with nanoparticles are important to develop drug delivery technologies for medical use. We previously developed wrapsome® (WS), an ~100 nm liposomal nanoparticle that can encapsulate siRNA, and reported that WS accumulates in tumors in vivo and inhibits their growth by an enhanced permeability and retention effect. In the present study, we evaluated the pharmacokinetics of nucleic acid-containing nanoparticles by combining dynamic positron emission tomography (PET) imaging and liquid chromatography-tandem mass spectrometry (LC/MS/MS) analysis. An 18-mer phosphorothioate oligodeoxynucleotide (ODN), trabedersen, was used as a model drug and was encapsulated in WS. Dynamic PET imaging and time-activity curve analysis of WS-encapsulated 64Cu-labeled ODNs administered to mice with MIA PaCa-2 subcutaneous xenograft tumors showed tumor accumulation (~3% injected dose per gram (%ID/g)) and liver accumulation (~30 %ID/g) at 24 h. Under these conditions, LC/MS/MS analysis showed that the level of intact ODNs was 1.62 %ID/g in the tumor and 1.70 %ID/g in the liver. From these pharmacokinetic data, the intact/accumulated ODN ratios were calculated using the following equation: intact/accumulated ODN ratio (%) = %ID/g LC/MS/MS, tissue, mean/%ID/g PET, tissue, mean × 100. Interestingly, the ratios for the tumor and kidney were maintained at 20-50% over 48 h after administration of the WS-encapsulated form. In contrast, the ratio for the liver rapidly decreased at 24 h, showing the same pattern as that for naked ODN. These different patterns indicate that WS effectively protected the ODN in the tumor and kidney, but protected it less efficiently in the liver. A combined approach of dynamic PET imaging and LC/MS/MS analysis will assist the development of nanoparticle-encapsulated nucleic acid drugs, such as those using WSs, to determine their detailed pharmacokinetics.


Assuntos
Nanopartículas/administração & dosagem , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Oligonucleotídeos/administração & dosagem , Animais , Linhagem Celular Tumoral , Cromatografia Líquida , Feminino , Humanos , Lipossomos , Camundongos , Oligonucleotídeos/farmacocinética , Tomografia por Emissão de Pósitrons , Espectrometria de Massas em Tandem , Distribuição Tecidual
4.
J Med Chem ; 61(22): 10067-10083, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30351933

RESUMO

A novel class of PPARγ ligand 1 (EC50 = 197 nM) with a dibenzoazepin scaffold was identified through high-throughput screening campaign. To avoid the synthetically troublesome chiral center of 1, its conformational analysis using the MacroModel was conducted, focusing on conformational flip of the tricyclic ring and the conformational restriction by the methyl group at the chiral center. On the basis of this analysis, scaffold hopping of dibenzoazepine into dibenzo[ b, e]oxepine by replacing the chiral structures with the corresponding olefinic E/ Z isomers was performed. Consequently, dibenzo[ b, e]oxepine scaffold 9 was developed showing extremely potent PPARγ reporter activity (EC50 = 2.4 nM, efficacy = 9.5%) as well as differentiation-inducing activity against a gastric cancer cell line MKN-45 that was more potent than any other well-known PPARγ agonists in vitro (94% at 30 nM). The X-ray crystal structure analysis of 9 complexed with PPARγ showed that it had a unique binding mode to PPARγ ligand-binding domain that differed from that of any other PPARγ agonists identified thus far.


Assuntos
Alcenos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Desenho de Fármacos , Oxepinas/metabolismo , Oxepinas/farmacologia , PPAR gama/metabolismo , Antineoplásicos/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Ligantes , Modelos Moleculares , Oxepinas/química , PPAR gama/química , Ligação Proteica , Domínios Proteicos , Estereoisomerismo , Relação Estrutura-Atividade
5.
J Control Release ; 180: 92-9, 2014 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-24566256

RESUMO

Recently, we demonstrated the utility of positron emission tomography (PET) imaging-based pharmacokinetic evaluation studies for preclinical experiments and microdose clinical trials, mainly focused on low molecular weight compounds. In order to investigate the pharmacokinetics of nucleic acid drugs and their drug delivery systems (DDSs) in vivo by using PET imaging, we developed a novel and efficient method for radiolabeling oligodeoxynucleotides with the positron-emitting radionuclide (18)F (stoichiometry-focused Huisgen-type (18)F labeling). By using this method, we succeeded in synthesizing a variety of (18)F-labeled oligodeoxynucleotides with not only phosphodiesters (PO) in natural forms, but also phosphorothioate (PS) and bridged nucleic acid (BNA) in artificial forms, and then performed PET studies and radioactive metabolite analyses of these (18)F-labeled oligodeoxynucleotides. The tissue-distribution and dynamic changes in radioactivity showed significantly different profiles between these antisense oligodeoxynucleotides. The radioactivity of (18)F-labeled PO-DNA and PO-BNA rapidly accumulated in the kidneys and liver and then moved to the renal medulla, ureter, bladder, and intestine. However, the radioactivity of (18)F-labeled PS-DNA and PS-BNA, possessing PS backbone structures, was retained in the blood for relatively long periods and then gradually accumulated in the liver and kidneys. The metabolite analysis showed that (18)F-labeled PO-DNA rapidly degraded by 5min and (18)F-labeled PO-BNA gradually degraded over time by 60min. Conversely, (18)F-labeled PS-DNA and PS-BNA were shown to be much more stable. To demonstrate the usefulness of the PET imaging technique for evaluating the improved targeting potential of the DDS, we designed and synthesized a cholesterol-modified oligodeoxynucleotide, that we developed as an antisense nucleic acid drug against proprotein convertase subtilisin/kexin type 9 (PCSK9) for hypercholesterolemia therapy, and evaluated its pharmacokinetics using PET imaging. As expected, the (18)F-labeled cholesterol-modified PS-BNA-type oligodeoxynucleotide showed much higher and more rapid accumulation in the delivery target organ, that is, the liver, which encourages us to develop this drug. These results suggest that dynamic PET studies using (18)F-incorporated oligodeoxynucleotide synthesized by stoichiometry-focused Huisgen-type labeling is useful for quantitative pharmacokinetic evaluation of nucleic acid drugs and their delivery systems.


Assuntos
Portadores de Fármacos/química , Radioisótopos de Flúor/farmacocinética , Ácidos Nucleicos/farmacocinética , Oligodesoxirribonucleotídeos Antissenso/farmacocinética , Tomografia por Emissão de Pósitrons/métodos , Animais , Colesterol/análogos & derivados , Radioisótopos de Flúor/administração & dosagem , Radioisótopos de Flúor/química , Ácidos Nucleicos/administração & dosagem , Ácidos Nucleicos/química , Oligodesoxirribonucleotídeos Antissenso/administração & dosagem , Oligodesoxirribonucleotídeos Antissenso/química , Compostos Organotiofosforados/química , Ratos , Ratos Sprague-Dawley , Distribuição Tecidual
6.
Bioorg Med Chem ; 19(3): 1162-6, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21256033

RESUMO

Using the copper(I)-catalyzed alkyne-azide 1,3-dipolar cycloaddition, a post-elongation modification of 1-ethynyl substituted nucleobases has been employed to construct 18 variations of oligonucleotides from a common oligonucleotide precursor. The triplex-forming ability of each oligonucleotide with dsDNA was evaluated by the UV melting experiment. It was found that triazole nucleobases generally tend to exhibit binding affinities in the following order: CG>TA>AT, GC base pairs. Among the triazole nucleobases examined, a 1-(4-ureidophenyl)triazole provided the best result with regard to affinity and selectivity for the CG base pair.


Assuntos
DNA/química , Oligonucleotídeos/química , Oligonucleotídeos/síntese química , Compostos de Fenilureia/síntese química , Triazóis/síntese química , Azidas/química , Pareamento de Bases , Desenho de Fármacos , Compostos Heterocíclicos , Compostos de Fenilureia/química , Triazóis/química
7.
Bioorg Med Chem ; 19(1): 249-55, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21146995

RESUMO

A novel method for (18)F-radiolabeling of oligodeoxynucleotides (ODNs) by a Cu-catalyzed Huisgen reaction has been developed by using the lowest possible amount of the precursor biomolecule for the realization of stoichiometry-oriented PET (positron emission tomography) chemistry. Under the optimized cyclization conditions of p- or m-azido([(18)F]fluoromethyl)benzene and alkyne-substituted ODN (20nmol) at 40°C for 15min in the presence of CuSO(4), TBTA [tris((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)amine], and sodium ascorbate (2:1:2), the synthesis of (18)F-labeled ODNs with sufficiently high radioactivities of 2.1-2.5GBq and specific radioactivities of 1800-2400GBq/µmol have been accomplished for use in animal and human PET studies.


Assuntos
Derivados de Benzeno/química , Cobre/química , Radioisótopos de Flúor/química , Oligodesoxirribonucleotídeos/química , Animais , Catálise , Cromatografia Líquida de Alta Pressão , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Ratos Sprague-Dawley , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
8.
Bioorg Med Chem Lett ; 19(12): 3316-9, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19419865

RESUMO

Oligonucleotides including C-nucleotides having 1-substitued 1H-1,2,3-triazoles as artificial nucleobases were conveniently synthesized by the post-elongation modification method using the copper(I)-catalyzed alkyne-azide 1,3-dipolar cycloaddition (CuAAC) reaction. The base-pairing properties of the triazole nucleobase analogs in forming duplexes with oligonucleotides were investigated by the T(m) experiments.


Assuntos
Pareamento de Bases , Nucleotídeos/síntese química , Triazóis/química , Métodos , Desnaturação de Ácido Nucleico , Hibridização de Ácido Nucleico , Nucleotídeos/química , Oligonucleotídeos , Temperatura de Transição
9.
Proc Natl Acad Sci U S A ; 101(33): 11966-70, 2004 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-15141084

RESUMO

An efficient total synthesis of (+)-vincristine has been accomplished through a stereoselective coupling of demethylvindoline and the eleven-membered carbomethoxyverbanamine presursor. Demethylvindoline was prepared by oxidation of 17-hydroxy-11-methoxytabersonine, followed by regioselective acetylation with mixed anhydride method. Although an initial attempt of coupling by using demethylvindoline formamide was not successful and resulted in recovery of the starting compounds, the reaction using demethylvindoline took place smoothly to furnish the desired bisindole product with the correct stereochemistry at C18'. After formation of the piperidine ring by sequential removal of the protective groups and intramolecular nucleophilic cyclization, the total synthesis of vincristine was completed by formylation of N1.


Assuntos
Vincristina/síntese química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Química Orgânica/métodos , Estrutura Molecular , Estereoisomerismo , Vincristina/química
10.
J Am Chem Soc ; 124(10): 2137-9, 2002 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11878966

RESUMO

A stereocontrolled total synthesis of (+)-vinblastine was accomplished, featuring preparations of the two indole units by means of a novel indole synthesis via radical cyclization of thioanilide, and a stereoselective coupling of these units.


Assuntos
Antineoplásicos Fitogênicos/síntese química , Vimblastina/síntese química , Catharanthus/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA