Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Headache Pain ; 24(1): 34, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37009867

RESUMO

The neuropeptides calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide (PACAP) have emerged as mediators of migraine pathogenesis. Both are vasodilatory peptides that can cause migraine-like attacks when infused into people and migraine-like symptoms when injected into rodents. In this narrative review, we compare the similarities and differences between the peptides in both their clinical and preclinical migraine actions. A notable clinical difference is that PACAP, but not CGRP, causes premonitory-like symptoms in patients. Both peptides are found in distinct, but overlapping areas relevant to migraine, most notably with the prevalence of CGRP in trigeminal ganglia and PACAP in sphenopalatine ganglia. In rodents, the two peptides share activities, including vasodilation, neurogenic inflammation, and nociception. Most strikingly, CGRP and PACAP cause similar migraine-like symptoms in rodents that are manifested as light aversion and tactile allodynia. Yet, the peptides appear to act by independent mechanisms possibly by distinct intracellular signaling pathways. The complexity of these signaling pathways is magnified by the existence of multiple CGRP and PACAP receptors that may contribute to migraine pathogenesis. Based on these differences, we suggest PACAP and its receptors provide a rich set of targets to complement and augment the current CGRP-based migraine therapeutics.


Assuntos
Transtornos de Enxaqueca , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase , Humanos , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Gânglio Trigeminal/metabolismo , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
3.
J Vis Exp ; (174)2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34459825

RESUMO

Migraine is a complex neurological disorder characterized by headache and sensory abnormalities, such as hypersensitivity to light, observed as photophobia. Whilst it is impossible to confirm that a mouse is experiencing migraine, light aversion can be used as a behavioral surrogate for the migraine symptom of photophobia. To test for light aversion, we utilize the light/dark assay to measure the time mice freely choose to spend in either a light or dark environment. The assay has been refined by introducing two critical modifications: pre-exposures to the chamber prior to running the test procedure and adjustable chamber lighting, permitting the use of a range of light intensities from 55 lux to 27,000 lux. Because the choice to spend more time in the dark is also indicative of anxiety, we also utilize a light-independent anxiety test, the open field assay, to distinguish anxiety from light-aversive behavior. Here, we describe a modified test paradigm for the light/dark and open field assays. The application of these assays is described for intraperitoneal injection of calcitonin gene-related peptide (CGRP) in two mouse strains and for optogenetic brain stimulation studies.


Assuntos
Transtornos de Enxaqueca , Animais , Comportamento Animal , Peptídeo Relacionado com Gene de Calcitonina , Camundongos , Atividade Motora , Fotofobia/etiologia
4.
J Headache Pain ; 22(1): 62, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34193048

RESUMO

BACKGROUND: Circadian patterns of migraine attacks have been reported by patients but remain understudied. In animal models, circadian phases are generally not taken into consideration. In particular, rodents are nocturnal animals, yet they are most often tested during their inactive phase during the day. This study aims to test the validity of CGRP-induced behavioral changes in mice by comparing responses during the active and inactive phases. METHODS: Male and female mice of the outbred CD1 strain were administered vehicle (PBS) or CGRP (0.1 mg/kg, i.p.) to induce migraine-like symptoms. Animals were tested for activity (homecage movement and voluntary wheel running), light aversive behavior, and spontaneous pain at different times of the day and night. RESULTS: Peripheral administration of CGRP decreased the activity of mice during the first hour after administration, induced light aversive behavior, and spontaneous pain during that same period of time. Both phenotypes were observed no matter what time of the day or night they were assessed. CONCLUSIONS: A decrease in wheel activity is an additional clinically relevant phenotype observed in this model, which is reminiscent of the reduction in normal physical activity observed in migraine patients. The ability of peripheral CGRP to induce migraine-like symptoms in mice is independent of the phase of the circadian cycle. Therefore, preclinical assessment of migraine-like phenotypes can likely be done during the more convenient inactive phase of mice.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Transtornos de Enxaqueca , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Transtornos de Enxaqueca/induzido quimicamente , Atividade Motora
5.
J Neurosci ; 41(21): 4697-4715, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-33846231

RESUMO

The neuropeptides CGRP (calcitonin gene-related peptide) and PACAP (pituitary adenylate cyclase-activating polypeptide) have emerged as mediators of migraine, yet the potential overlap of their mechanisms remains unknown. Infusion of PACAP, like CGRP, can cause migraine in people, and both peptides share similar vasodilatory and nociceptive functions. In this study, we have used light aversion in mice as a surrogate for migraine-like photophobia to compare CGRP and PACAP and ask whether CGRP or PACAP actions were dependent on each other. Similar to CGRP, PACAP induced light aversion in outbred CD-1 mice. The light aversion was accompanied by increased resting in the dark, but not anxiety in a light-independent open field assay. Unexpectedly, about one-third of the CD-1 mice did not respond to PACAP, which was not seen with CGRP. The responder and nonresponder phenotypes were stable, inheritable, and not sex linked, although there was a trend for greater responses among male mice. RNA-sequencing analysis of trigeminal ganglia yielded hierarchical clustering of responder and nonresponder mice and revealed a number of candidate genes, including greater expression of the Trpc5 and Kcnk12 ion channels and glycoprotein hormones and receptors in a subset of male responder mice. Importantly, an anti-PACAP monoclonal antibody could block PACAP-induced light aversion but not CGRP-induced light aversion. Conversely, an anti-CGRP antibody could not block PACAP-induced light aversion. Thus, we propose that CGRP and PACAP act by independent convergent pathways that cause a migraine-like symptom in mice.SIGNIFICANCE STATEMENT The relationship between the neuropeptides CGRP (calcitonin gene-related peptide) and PACAP (pituitary adenylate cyclase-activating polypeptide) in migraine is relevant given that both peptides can induce migraine in people, yet to date only drugs that target CGRP are available. Using an outbred strain of mice, we were able to show that most, but not all, mice respond to PACAP in a preclinical photophobia assay. Our finding that CGRP and PACAP monoclonal antibodies do not cross-inhibit the other peptide indicates that CGRP and PACAP actions are independent and suggests that PACAP-targeted drugs may be effective in patients who do not respond to CGRP-based therapeutics.


Assuntos
Fotofobia/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/farmacologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Feminino , Masculino , Camundongos , Transtornos de Enxaqueca/genética , Transtornos de Enxaqueca/metabolismo , Fotofobia/genética , Gânglio Trigeminal/metabolismo
6.
Headache ; 60(9): 1961-1981, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32750230

RESUMO

OBJECTIVE: A hallmark of migraine is photophobia. In mice, photophobia-like behavior is induced by calcitonin gene-related peptide (CGRP), a neuropeptide known to be a key player in migraine. In this study, we sought to identify sites within the brain from which CGRP could induce photophobia. DESIGN: We focused on the posterior thalamic region, which contains neurons responsive to both light and dural stimulation and has CGRP binding sites. We probed this area with both optogenetic stimulation and acute CGRP injections in wild-type mice. Since the light/dark assay has historically been used to investigate anxiety-like responses in animals, we measured anxiety in a light-independent open field assay and asked if stimulation of a brain region, the periaqueductal gray, that induces anxiety would yield similar results to posterior thalamic stimulation. The hippocampus was used as an anatomical control to ensure that light-aversive behaviors could not be induced by the stimulation of any brain region. RESULTS: Optogenetic activation of neuronal cell bodies in the posterior thalamic nuclei elicited light aversion in both bright and dim light without an anxiety-like response in an open field assay. Injection of CGRP into the posterior thalamic region triggered similar light-aversive behavior without anxiety. In contrast to the posterior thalamic nuclei, optogenetic stimulation of dorsal periaqueductal gray cell bodies caused both light aversion and an anxiety-like response, while CGRP injection had no effect. In the dorsal hippocampus, neither optical stimulation nor CGRP injection affected light aversion or open field behaviors. CONCLUSION: Stimulation of posterior thalamic nuclei is able to initiate light-aversive signals in mice that may be modulated by CGRP to cause photophobia in migraine.


Assuntos
Comportamento Animal , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Optogenética , Fotofobia/etiologia , Núcleos Posteriores do Tálamo , Animais , Comportamento Animal/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/administração & dosagem , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fotofobia/induzido quimicamente , Núcleos Posteriores do Tálamo/efeitos dos fármacos
7.
Cephalalgia ; 40(14): 1585-1604, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32811179

RESUMO

BACKGROUND: Calcitonin gene-related peptide is recognized as a key player in migraine, yet the mechanisms and sites of calcitonin gene-related peptide action remain unknown. The efficacy of calcitonin gene-related peptide-blocking antibodies as preventative migraine drugs supports a peripheral site of action, such as the trigeminovasculature. Given the apparent disconnect between the importance of vasodilatory peptides in migraine and the prevailing opinion that vasodilation is an epiphenomenon, the goal of this study was to test whether vasodilation plays a role in calcitonin gene-related peptide-induced light aversive behavior in mice. METHODS: Systemic mean arterial pressure and light aversive behavior were measured after intraperitoneal administration of calcitonin gene-related peptide and vasoactive intestinal peptide in wild-type CD1 mice. The functional significance of vasodilation was tested by co-administration of a vasoconstrictor (phenylephrine, endothelin-1, or caffeine) with calcitonin gene-related peptide to normalize blood pressure during the light aversion assay. RESULTS: Both calcitonin gene-related peptide and vasoactive intestinal peptide induced light aversion that was associated with their effect on mean arterial pressure. Notably, vasoactive intestinal peptide caused relatively transient vasodilation and light aversion. Calcitonin gene-related peptide-induced light aversion was still observed even with normalized blood pressure. However, two of the agents, endothelin-1 and caffeine, did reduce the magnitude of light aversion. CONCLUSION: We propose that perivascular calcitonin gene-related peptide causes light-aversive behavior in mice by both vasomotor and non-vasomotor mechanisms.


Assuntos
Transtornos de Enxaqueca , Fotofobia , Animais , Cafeína , Peptídeo Relacionado com Gene de Calcitonina , Endotelina-1/toxicidade , Camundongos , Fotofobia/induzido quimicamente , Peptídeo Intestinal Vasoativo
8.
J Pharm Pharmacol ; 72(10): 1352-1360, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32588458

RESUMO

OBJECTIVES: To investigate the formulation of the peptide-based antagonist (34 Pro,35 Phe)CGRP27-37 , of the human calcitonin gene-related peptide (CGRP) receptor as a potential nasally delivered migraine treatment. METHODS: Peptide sequences were prepared using automated methods and purified by preparative HPLC. Their structure and stability were determined by LC-MS. Antagonist potency was assessed by measuring CGRP-stimulated cAMP accumulation in SK-N-MC, cells and in CHO cells overexpressing the human CGRP receptor. In vivo activity was tested in plasma protein extravasation (PPE) studies using Evans blue dye accumulation. Peptide-containing chitosan microparticles were prepared by spray drying. KEY FINDINGS: (34 Pro,35 Phe)CGRP27-37 exhibited a 10-fold increased affinity compared to αCGRP27-37 . Administration of (34 Pro,35 Phe)CGRP27-37 to mice led to a significant decrease in CGRP-induced PPE confirming antagonistic properties in vivo. There was no degradation of (34 Pro,35 Phe)CGRP27-37 and no loss of antagonist potency during formulation and release from chitosan microparticles. CONCLUSIONS: (34 Pro,35 Phe)CGRP27-37 is a potent CGRP receptor antagonist both in vitro and in vivo, and it can be formulated as a dry powder with no loss of activity indicating its potential as a nasally formulated anti-migraine medicine.


Assuntos
Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/administração & dosagem , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/metabolismo , Composição de Medicamentos/métodos , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Administração Intranasal , Animais , Células CHO , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/síntese química , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Camundongos , Camundongos Endogâmicos C57BL
9.
Neuroscience ; 415: 121-134, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31295530

RESUMO

How obesity exacerbates migraine and other pain disorders remains unknown. Trigeminal nociceptive processing, crucial in migraine pathophysiology, is abnormal in mice with diet induced obesity. However, it is not known if this is also true in genetic models of obesity. We hypothesized that obese mice, regardless of the model, have trigeminal hyperalgesia. To test this, we first evaluated trigeminal thermal nociception in leptin deficient (ob/ob) and control mice using an operant thermal assay. Unexpectedly, we found significant hypoalgesia in ob/ob mice. Because thermal hypoalgesia also occurs in mice lacking the transient receptor potential vanilloid 1 channel (TRPV1), we tested capsaicin-evoked trigeminal nociception. Ob/ob and control mice had similar capsaicin-evoked nocifensive behaviors, but ob/ob mice were significantly less active after a facial injection of capsaicin than were diet-induced obese mice or lean controls. Conditioned place aversion in response to trigeminal stimulation with capsaicin was similar in both genotypes, indicating normal negative affect and pain avoidance. Supporting this, we found no difference in TRPV1 expression in the trigeminal ganglia of ob/ob and control mice. Finally, we assessed the possible contribution of hyperphagia, a hallmark of leptin deficiency, to the behavior observed in the operant assay. Ob/ob and lean control mice had similar reduction of intake when quinine or capsaicin was added to the sweetened milk, excluding a significant contribution of hyperphagia. In summary, ob/ob mice, unlike mice with diet-induced obesity, have trigeminal thermal hypoalgesia but normal responses to capsaicin, suggesting specificity in the mechanisms by which leptin acts in pain processing.


Assuntos
Hiperalgesia/fisiopatologia , Obesidade/fisiopatologia , Gânglio Trigeminal/fisiologia , Animais , Comportamento/efeitos dos fármacos , Capsaicina/farmacologia , Dieta , Ingestão de Alimentos/efeitos dos fármacos , Leptina/deficiência , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Modelos Animais , Nociceptividade/fisiologia , Dor , Medição da Dor , Quinina , Canais de Cátion TRPV/metabolismo , Gânglio Trigeminal/metabolismo
10.
J Cereb Blood Flow Metab ; 39(4): 690-703, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29297736

RESUMO

Calcitonin gene-related peptide (CGRP) can cause migraines, yet it is also a potent vasodilator that protects against hypertension. Given the emerging role of CGRP-targeted antibodies for migraine prevention, an important question is whether the protective actions of CGRP are mediated by vascular or neural CGRP receptors. To address this, we have characterized the cardiovascular phenotype of transgenic nestin/hRAMP1 mice that have selective elevation of a CGRP receptor subunit in the nervous system, human receptor activity-modifying protein 1 (hRAMP1). Nestin/hRAMP1 mice had relatively little hRAMP1 RNA in blood vessels and intravenous injection of CGRP caused a similar blood pressure decrease in transgenic and control mice. At baseline, nestin/hRAMP1 mice exhibited similar mean arterial pressure, heart rate, baroreflex sensitivity, and sympathetic vasomotor tone as control mice. We previously reported that expression of hRAMP1 in all tissues favorably improved autonomic regulation and attenuated hypertension induced by angiotensin II (Ang II). Similarly, in nestin/hRAMP1 mice, hypertension caused by Ang II or phenylephrine was greatly attenuated, and associated autonomic dysregulation and increased sympathetic vasomotor tone were diminished or abolished. We conclude that increased expression of neuronal CGRP receptors is sufficient to induce a protective change in cardiovascular autonomic regulation with implications for migraine therapy.


Assuntos
Doenças do Sistema Nervoso Autônomo/prevenção & controle , Hipertensão/prevenção & controle , Sistema Nervoso/química , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Animais , Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Humanos , Camundongos , Camundongos Transgênicos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo
11.
Br J Pharmacol ; 174(12): 1826-1840, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28317098

RESUMO

BACKGROUND AND PURPOSE: CGRP is a potent vasodilator and nociceptive neuropeptide linked to migraine. CGRP receptors are heterodimers of receptor activity modifying protein 1 (RAMP1) and either calcitonin receptor-like receptor (CLR; forms canonical CGRP receptor) or calcitonin receptor (CT receptor; forms AMY1 receptor). The goal of this study was to test whether transgenic mice globally expressing human RAMP1 have increased CGRP receptor activity and whether the receptors are sensitive to human selective antagonist telcagepant. EXPERIMENTAL APPROACH: cAMP production was measured in primary cultures of aortic smooth muscle and trigeminal ganglia neurons from global hRAMP1 mice and non-transgenic littermates. Functional activity and inhibition were compared with clonal cell lines expressing combinations of CLR or CT receptors with RAMP1. KEY RESULTS: Cultured smooth muscle from global hRAMP1 mice had a 10-fold greater CGRP-induced cAMP maximal response (Rmax) than non-transgenic littermates, with similar EC50 s. In contrast, cultured trigeminal ganglia from global hRAMP1 mice had a 40-fold leftward shift of the EC50 , with similar Rmax values as littermates. In both hRAMP1 cultures, telcagepant blocked CGRP-induced cAMP production, but was not effective in non-transgenic cultures. IC50 values were closer to those observed for CT receptor/hRAMP1 than CLR/hRAMP1 in clonal cell lines. CONCLUSIONS AND IMPLICATIONS: Overexpression of hRAMP1 increases CGRP signalling by changing the maximal response or ligand sensitivity, depending on tissue type. Furthermore, telcagepant inhibited transgenic hRAMP1 CGRP receptors, but the degree of inhibition suggests that the transgenic mice are only partially humanized or both canonical CGRP and AMY1 receptors are functional in trigeminal ganglia neurons and vascular smooth muscle.


Assuntos
Proteína 1 Modificadora da Atividade de Receptores/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Animais , Azepinas/farmacologia , Células CHO , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Feminino , Perfilação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Relação Estrutura-Atividade
12.
J Neurosci ; 37(1): 204-216, 2017 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28053042

RESUMO

The neuropeptide calcitonin gene-related peptide (CGRP) is a key player in migraine. Although migraine can be treated using CGRP antagonists that act peripherally, the relevant sites of CGRP action remain unknown. To address the role of CGRP both within and outside the CNS, we used CGRP-induced light-aversive behavior in mice as a measure of migraine-associated photophobia. Peripheral (intraperitoneal) injection of CGRP resulted in light-aversive behavior in wild-type CD1 mice similar to aversion seen previously after central (intracerebroventricular) injection. The phenotype was also observed in C57BL/6J mice, although to a lesser degree and with more variability. After intraperitoneal CGRP, motility was decreased in the dark only, similar to motility changes after intracerebroventricular CGRP. In addition, as with intracerebroventricular CGRP, there was no general increase in anxiety as measured in an open-field assay after intraperitoneal CGRP. Importantly, two clinically effective migraine drugs, the 5-HT1B/D agonist sumatriptan and a CGRP-blocking monoclonal antibody, attenuated the peripheral CGRP-induced light aversion and motility behaviors. To begin to address the mechanism of peripheral CGRP action, we used transgenic CGRP-sensitized mice that have elevated levels of the CGRP receptor hRAMP1 subunit in nervous tissue (nestin/hRAMP1). Surprisingly, sensitivity to low light was not seen after intraperitoneal CGRP injection, but was seen after intracerebroventricular CGRP injection. These results suggest that CGRP can act in both the periphery and the brain by distinct mechanisms and that CGRP actions may be transmitted to the CNS via indirect sensitization of peripheral nerves. SIGNIFICANCE STATEMENT: The neuropeptide calcitonin gene-related peptide (CGRP) is a central player in migraine pathogenesis, yet its site(s) of action remains unknown. Some preclinical studies have pointed to central sites in the brain and brainstem. However, a peripheral site of action is indicated by the ability of intravenous CGRP to trigger migraine in humans and the efficacy of CGRP receptor antagonists that evidently do no penetrate the CNS in effective amounts. Resolving this issue is particularly important given recent clinical trials showing that anti-CGRP monoclonal antibodies can reduce and even prevent migraine attacks. In this study, we report that CGRP can act in both the brain and the periphery of the mouse to cause migraine-like photophobia by apparently distinct mechanisms.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Transtornos de Enxaqueca/psicologia , Fotofobia/psicologia , Animais , Ansiedade/psicologia , Peptídeo Relacionado com Gene de Calcitonina/administração & dosagem , Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Escuridão , Feminino , Injeções Intraperitoneais , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora , Nestina/genética , Proteína 1 Modificadora da Atividade de Receptores/genética , Agonistas do Receptor de Serotonina/farmacologia , Sumatriptana/farmacologia
13.
Neuropeptides ; 64: 95-99, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27865545

RESUMO

The multifunctional neuropeptide calcitonin gene-related peptide (CGRP) and its receptor are expressed throughout the gastrointestinal tract. Previous studies have shown that CGRP has roles in intestinal motility, water secretion, and inflammation. Furthermore, animal studies have demonstrated CGRP involvement in diarrhea secondary to C. difficile and food allergies. Diarrhea thus provides a convenient bioassay of CGRP activity in the GI system. In this proof of principle study, we report that prophylactic administration of an anti-CGRP antibody is able to block CGRP-induced diarrhea in mice. As a control, the CGRP-receptor antagonist olcegepant also attenuated the diarrhea response to CGRP. This preclinical study indicates that anti-CGRP antibodies may provide a new preventative therapy for gastrointestinal disorders involving CGRP.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/imunologia , Diarreia/tratamento farmacológico , Inflamação/tratamento farmacológico , Transtornos de Enxaqueca/imunologia , Animais , Diarreia/imunologia , Modelos Animais de Doenças , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/imunologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo
14.
Invest Ophthalmol Vis Sci ; 55(10): 6878-85, 2014 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-25257059

RESUMO

PURPOSE: Mutations in the RGS9 gene cause the visual disorder bradyopsia, which includes difficulty adapting to changes in light and photophobia. The purpose of this study was to determine whether lack of Rgs9 also caused photophobia-like behavior in Rgs9 knockout (Rgs9-/-) mice and to identify useful diagnostic measures of Rgs9 dysfunction. METHODS: We measured two behavioral responses to light and the pupillary light reflex to determine the form and basis of photophobia in Rgs9-/- mice. RESULTS: Rgs9-/- mice spent less time than wild-type mice in both dim and bright light. The mice also showed increased sensitivity to light in negative masking behavior, with a half maximal response at 0.08 lux (0.01 µW·cm(-2)) in Rgs9-/- mice compared to 5.0 lux (0.85 µW·cm(-2)) in wild-type mice. These behaviors were not due to increased anxiety or increased pupil size causing more light to enter the eye. Rather, constriction of the pupil showed that Rgs9-/- mice had an abnormally sustained response to light across multiple irradiance measurement pathways. CONCLUSIONS: Rgs9-/- mice recapitulate a photophobia phenotype of bradyopsia, and the pupil light reflex identifies a simple means to screen for irradiance measurement abnormalities in bradyopsia and potentially other genetic disorders involving photophobia.


Assuntos
Oftalmopatias Hereditárias/fisiopatologia , Fotofobia/fisiopatologia , Reflexo Pupilar/fisiologia , Células Ganglionares da Retina/fisiologia , Animais , Modelos Animais de Doenças , Oftalmopatias Hereditárias/complicações , Oftalmopatias Hereditárias/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Luminosa , Fotofobia/etiologia , Fotofobia/metabolismo
15.
J Biol Chem ; 288(18): 12580-95, 2013 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-23515314

RESUMO

Protein inhibitors of activated STAT (Pias) proteins can act independent of sumoylation to modulate the activity of transcription factors and Pias proteins interacting with transcription factors can either activate or repress their activity. Pias proteins are expressed in many tissues and cells during development and we asked if Pias proteins regulated the pituitary homeobox 2 (PITX2) homeodomain protein, which modulates developmental gene expression. Piasy and Pias1 proteins are expressed during craniofacial/tooth development and directly interact and differentially regulate PITX2 transcriptional activity. Piasy and Pias1 are co-expressed in craniofacial tissues with PITX2. Yeast two-hybrid, co-immunoprecipitation and pulldown experiments demonstrate Piasy and Pias1 interactions with the PITX2 protein. Piasy interacts with the PITX2 C-terminal tail to attenuate its transcriptional activity. In contrast, Pias1 interacts with the PITX2 C-terminal tail to increase PITX2 transcriptional activity. The E3 ligase activity associated with the RING domain in Piasy is not required for the attenuation of PITX2 activity, however, the RING domain of Pias1 is required for enhanced PITX2 transcriptional activity. Bimolecular fluorescence complementation assays reveal PITX2 interactions with Piasy and Pias1 in the nucleus. Piasy represses the synergistic activation of PITX2 with interacting co-factors and Piasy represses Pias1 activation of PITX2 transcriptional activity. In contrast, Pias1 did not affect the synergistic interaction of PITX2 with transcriptional co-factors. Last, we demonstrate that Pias proteins form a complex with PITX2 and Lef-1, and PITX2 and ß-catenin. Lef-1, ß-catenin, and Pias interactions with PITX2 provide new molecular mechanisms for the regulation of PITX2 transcriptional activity and the activity of Pias proteins.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Homeodomínio/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica/fisiologia , Animais , Células CHO , Núcleo Celular/genética , Cricetinae , Cricetulus , Proteínas de Homeodomínio/genética , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Complexos Multiproteicos/genética , Ligação Proteica , Proteínas Inibidoras de STAT Ativados/genética , Estrutura Terciária de Proteína , Fatores de Transcrição/genética , beta Catenina/genética , beta Catenina/metabolismo , Proteína Homeobox PITX2
16.
J Neurosci ; 32(44): 15439-49, 2012 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-23115181

RESUMO

The neuropeptide calcitonin gene-related peptide (CGRP) plays a critical role in the pathophysiology of migraine. We have focused on the role of CGRP in photophobia, which is a common migraine symptom. We previously used an operant-based assay to show that CGRP-sensitized transgenic (nestin/hRAMP1), but not control, mice exhibited light aversion in response to an intracerebroventricular CGRP injection. A key question was whether the transgenic phenotype was due to overexpression of the CGRP receptor at endogenous or novel expression sites. We reasoned that if endogenous receptor sites were sufficient for light-aversive behavior, then wild-type mice should also show the phenotype when given a sufficiently strong stimulus. In this study, we report that mice with normal levels of endogenous CGRP receptors demonstrate light avoidance following CGRP administration. This phenotype required the combination of two factors: higher light intensity and habituation to the testing chamber. Control tests confirmed that light aversion was dependent on coincident exposure to CGRP and light and cannot be fully explained by increased anxiety. Furthermore, CGRP reduced locomotion only in the dark, not in the light. Coadministration of rizatriptan, a 5-HT(1B/D) agonist anti-migraine drug, attenuated the effects of exogenous CGRP on light aversion and motility. This suggests that triptans can act by mechanisms that are distinct from inhibition of CGRP release. Thus, we demonstrate that activation of endogenous CGRP receptors is sufficient to elicit light aversion in mice, which can be modulated by a drug commonly used to treat migraine.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/antagonistas & inibidores , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Fotofobia/induzido quimicamente , Receptor 5-HT1B de Serotonina/efeitos dos fármacos , Agonistas do Receptor de Serotonina/farmacologia , Animais , Ansiedade/psicologia , Comportamento Animal/efeitos dos fármacos , Feminino , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Estimulação Luminosa , Fotofobia/psicologia , Triazóis/farmacologia , Triptaminas/farmacologia
17.
Diabetes ; 60(4): 1063-71, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21357463

RESUMO

OBJECTIVE: Receptor activity-modifying proteins (RAMPs) 1, 2, and 3 are unusual accessory proteins that dictate the binding specificity of two G protein-coupled receptors involved in energy homeostasis: calcitonin gene-related peptide (CGRP) and amylin receptors. These proteins are expressed throughout the central nervous system (CNS), including in the brain regions involved in the regulation of energy homeostasis, but the significance of CNS RAMPs in the control of energy balance remains unknown. RESEARCH DESIGN AND METHODS: To examine the functional significance of modulating neuronal RAMP1, we assessed the effect of overexpressing human RAMP1 (hRAMP1) in the CNS on body energy balance. RESULTS: Nestin/hRAMP1 transgenic mice have a remarkably decreased body weight associated with reduced fat mass and circulating leptin levels. The transgenic mice exhibited higher energy expenditure as indicated by increased oxygen consumption, body temperature, and sympathetic tone subserving brown adipose tissue (BAT). Consistent with this, the nestin/hRAMP1 transgenic mice had elevated BAT mRNA levels of peroxisome proliferator-activated receptor γ coactivator 1α and uncoupling protein 1 and 3, and these changes can be reversed by chronic blockade of sympathetic nervous system signaling. Furthermore, metabolic response to amylin was enhanced in the nestin/hRAMP1 mice whereas the response to CGRP was blunted, possibly the result of higher expression of CGRP in the CNS. CONCLUSIONS: These data demonstrate that CNS RAMP1 plays a pivotal role in the regulation of energy homeostasis by promoting energy expenditure.


Assuntos
Metabolismo Energético/fisiologia , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Peso Corporal/genética , Peso Corporal/fisiologia , Sistema Nervoso Central/metabolismo , Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Metabolismo Energético/genética , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Proteína 1 Modificadora da Atividade de Receptores/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Behav Neurosci ; 124(6): 821-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21038932

RESUMO

Detection of light in the eye underlies image-forming vision, but also regulates adaptive responses in physiology and behavior. Typically these adaptive responses do not involve image-forming vision, but depend on a relatively absolute measure of brightness (nonimage-forming irradiance detection). The goal of this study was to further understand how image-forming vision and nonimage-forming irradiance detection contribute to the effects of light on behavior. Three light dependent behaviors were assessed in wild-type, Rpe65-/- and rd1 mice. In Rpe65-/- mice, nonimage-forming irradiance detection is severely attenuated, but rod based visual acuity is relatively preserved. In rd1 mice visual acuity is nonrecordable, but nonimage-forming responses are less severely attenuated than Rpe65-/-. Positive masking, an image-forming vision dependent increase in wheel running, was absent in rd1 and restricted to higher irradiances in Rpe65-/-. Negative masking, a suppression of wheel running sensitivity with nonimage-forming irradiance detection input, was increased in rd1, but reduced in Rpe65-/- mice. By contrast, light aversion, an avoidance of brightly lit areas, was abolished in both Rpe65-/- and rd1. This shows that image-forming vision is not sufficient for light aversion, suggesting nonimage-forming irradiance detection motivates this behavior. Further, the differing effects of disease suggest that negative masking and light aversion are distinct responses with specialized nonimage-forming irradiance detection pathways.


Assuntos
Comportamento Animal/fisiologia , Proteínas de Transporte/genética , Proteínas do Olho/genética , Visão Ocular/fisiologia , Acuidade Visual/fisiologia , Animais , Aprendizagem da Esquiva/fisiologia , Feminino , Masculino , Camundongos , Camundongos Knockout , Estimulação Luminosa , cis-trans-Isomerases
19.
Neuropharmacology ; 58(1): 156-65, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19607849

RESUMO

Migraine is a complex neurological disorder with a significant impact on patients and society. Clinical and preclinical studies have established the neuropeptide calcitonin gene-related peptide (CGRP) as a key player in migraine and other neurovascular headaches. To study the role of CGRP in these disorders, we have characterized the photophobic phenotype of nestin/hRAMP1 mice, a transgenic model with genetically engineered increased sensitivity to CGRP. These mice have increased nervous system expression of a regulatory subunit of the CGRP receptor, human receptor activity-modifying receptor (hRAMP1). We have previously demonstrated that nestin/hRAMP1 mice display a light-aversive behavior that is greatly enhanced by CGRP and blocked by a CGRP receptor antagonist used to treat migraine. Here we have compared their behavior in two different experimental setups with testing chambers of different sizes and light intensities as well as in complete darkness. We demonstrated similar degrees of light aversion in nestin/hRAMP1 mice with 1000 and 50 lux. To control for other possible factors driving nestin/hRAMP1 mice to the dark zone, we tested them in the absence of any light, and they showed identical behavior as littermates. Furthermore, both nestin/hRAMP1 and control mice have decreased motility in response to CGRP in the dark, but not the light side of the chamber. Our findings confirm the robust CGRP-induced light-aversive phenotype of nestin/hRAMP1 mice, which can be a surrogate of photophobia, and validates its usefulness as a model of migraine and other disorders associated with photophobia.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Luz/efeitos adversos , Fotofobia/metabolismo , Fotofobia/fisiopatologia , Animais , Comportamento Animal/efeitos dos fármacos , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Proteínas de Filamentos Intermediários/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Atividade Motora/genética , Proteínas do Tecido Nervoso/genética , Nestina , Fotofobia/induzido quimicamente , Fotofobia/genética , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Proteínas Modificadoras da Atividade de Receptores , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Vasodilatadores/farmacologia
20.
J Neurosci ; 29(27): 8798-804, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19587287

RESUMO

Migraine is a chronic neurological disorder characterized by recurrent episodes of severe unilateral throbbing head pain and associated symptoms, such as photophobia. Our current understanding of the mechanisms underlying migraine has been hampered by limitations in ascertaining migraine symptoms in animal models. Clinical studies have established the neuropeptide calcitonin gene-related peptide (CGRP) as a key player in migraine. Here, we establish a genetic model of photophobia by engineering increased sensitivity to CGRP in mice. These transgenic mice (nestin/hRAMP1) display light-aversive behavior that is greatly enhanced by intracerebroventricular injection of CGRP and blocked by coadministration of the CGRP receptor antagonist olcegepant. This behavior appears to be an indicator of photophobia and cannot be fully explained by gross abnormality of ocular anatomy or differences in general anxiety or motor activity. Our findings demonstrate that a single gene, receptor activity-modifying protein 1 (RAMP1), can be a modifier of photophobia and, by extension, suggest that genetic or epigenetic modulation of RAMP1 levels may contribute to migraine susceptibility. Moreover, they validate CGRP hypersensitive mice as a tool for exploring the neurobiology and novel therapies for migraine and other disorders involving photophobia.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/fisiologia , Luz , Enxaqueca com Aura/fisiopatologia , Fotofobia/fisiopatologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Enxaqueca com Aura/genética , Atividade Motora/genética , Estimulação Luminosa/efeitos adversos , Estimulação Luminosa/métodos , Fotofobia/genética , Ratos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...