Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sens ; 8(9): 3478-3486, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37669038

RESUMO

The detection of methane and carbon dioxide is of growing importance due to their negative impact on global warming. This is true for both environmental monitoring and leak detection in industrial processes. Although solid-state sensors are technologically mature, they have limitations that prohibit their use in certain situations, e.g., explosive atmospheres. Thus, there is a need to develop new types of sensor materials. Herein, we demonstrate a simple, low-cost, metal-organic framework (MOF)-based gas leak detection sensor. The system is based on gravimetric sensing by using a quartz crystal microbalance. The quartz crystal is functionalized by layer-by-layer growth of a thin metal-organic framework film. This film shows selective uptake of methane or carbon dioxide under atmospheric conditions. The hardware has low cost, simple operation, and theoretically high sensitivity. Overall, the sensor is characterized by simplicity and high robustness. Furthermore, by exploiting the different adsorption kinetics as measured by multiple harmonic analyses, it is possible to discriminate whether the response is due to methane or carbon dioxide. In summary, we demonstrate data relevant toward new applications of metal-organic frameworks and microporous hybrid materials in sensing.


Assuntos
Dióxido de Carbono , Estruturas Metalorgânicas , Temperatura , Adsorção , Metano
2.
J Med Chem ; 66(16): 11536-11554, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37566000

RESUMO

The recombination of natural product (NP) fragments in unprecedented ways has emerged as an important strategy for bioactive compound discovery. In this context, we propose that privileged primary fragments predicted to be enriched in activity against a specific target class can be coupled to diverse secondary fragments to engineer selectivity among closely related targets. Here, we report the synthesis of an alkaloid-inspired compound library enriched in spirocyclic ring fusions, comprising 58 compounds from 12 tropane- or quinuclidine-containing scaffolds, all of which can be considered pseudo-NPs. The library displays excellent predicted drug-like properties including high Fsp3 content and Lipinski's rule-of-five compliance. Targeted screening against selected members of the serotonin and dopamine G protein-coupled receptor family led to the identification of several hits that displayed significant agonist or antagonist activity against 5-HT2A and/or 5-HT2C, and subsequent optimization of one of these delivered a lead dual 5-HT2B/C antagonist with a highly promising selectivity profile.


Assuntos
Alcaloides , Quinuclidinas , Serotonina , Alcaloides/farmacologia , Receptor 5-HT2A de Serotonina , Receptor 5-HT2C de Serotonina , Receptores de Serotonina , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Tropanos , Quinuclidinas/química , Quinuclidinas/farmacologia
3.
Chem Commun (Camb) ; 59(12): 1609-1612, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36692932

RESUMO

Self-assembly of trans-{EuI2} nodes and ditopic ligands leads to isoreticular 2D frameworks featuring a rare, non-kagome Archimedean tessellation. The topology and intra-layer Eu(II)-Eu(II) antiferromagnetic interactions provide the prerequisites for geometrical spin frustration, which, due to the spin state degeneracy, is key for novel phenomena such as enhanced magnetic refrigeration.

4.
Nat Commun ; 13(1): 5766, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180432

RESUMO

Electronic synergy between metal ions and organic linkers is a key to engineering molecule-based materials with a high electrical conductivity and, ultimately, metallicity. To enhance conductivity in metal-organic solids, chemists aim to bring the electrochemical potentials of the constituent metal ions and bridging organic ligands closer in a quest to obtain metal-d and ligand-π admixed frontier bands. Herein, we demonstrate the critical role of the metal ion in tuning the electronic ground state of such materials. While VCl2(pyrazine)2 is an electrical insulator, TiCl2(pyrazine)2 displays the highest room-temperature electronic conductivity (5.3 S cm-1) for any metal-organic solid involving octahedrally coordinated metal ions. Notably, TiCl2(pyrazine)2 exhibits Pauli paramagnetism consistent with the specific heat, supporting the existence of a Fermi liquid state (i.e., a correlated metal). This result widens perspectives for designing molecule-based systems with strong metal-ligand covalency and electronic correlations.

5.
J Am Chem Soc ; 143(35): 14041-14045, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34374526

RESUMO

The self-assembly of lanthanide ions with ditopic organic spacers results in the formation of complex tiling patterns that mimic the structural motifs of quasi-periodic 2D materials. The linking of trans-{LnI2}+ nodes (Ln = Gd, Dy) by both closed-shell and anion radicals of 4,4'-bipyridine affords rare examples of Archimedean tessellations in a metal-organic framework. We furthermore demonstrate the occurrence of sizable magnetic exchange interactions and slow relaxation of magnetization behavior in a complex tessellation pattern. The implementation of Archimedean tessellations in lanthanide(III) coordination solids couriers a strategy to design elusive quasi-periodic metal-organic frameworks with inimitable magnetic properties.

6.
Chem Commun (Camb) ; 57(32): 3861-3864, 2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33871533

RESUMO

We report the synthesis of pyrazine-pillared metal-organic frameworks (MOFs) generated through ligand substitution of the Group 6 metal hexacarbonyls. The obtained frameworks exhibit hexagonal pore channels with CO-plastered porewalls. This series constitutes the first crystallographically characterized examples of Cr(0), Mo(0), and W(0)-based MOFs and suggests the exploration of homoleptic metal carbonyls as starting materials to generate polymeric materials with low-valent metal nodes.

7.
Nat Commun ; 11(1): 4705, 2020 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-32943620

RESUMO

Tessellation of self-assembling molecular building blocks is a promising strategy to design metal-organic materials exhibiting geometrical frustration and ensuing frustrated physical properties. Appearing in two-dimensional quasiperiodic phases, tilings consisting of five-vertex nodes are regarded as approximants for quasicrystals. Unfortunately, these structural motifs are exceedingly rare due to the complications of acquiring five-fold coordination confined to the plane. Lanthanide ions display the sufficient coordinative plasticity, and large ionic radii, to allow their incorporation into irregular molecule-based arrays. We herein present the use of ytterbium(II) as a five-vertex node in a two-dimensional coordination solid, YbI2(4,4'-bipyridine)2.5. The semi-regular Archimedean tessellation structure verges on quasicrystallinity and paves the way for lanthanide-based metal-organic materials with interesting photonic and magnetic properties.

8.
ACS Omega ; 5(7): 3462-3466, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118160

RESUMO

Quinoid-based ligands constitute the most common class of redox-active ligands used to construct electrically conductive and magnetic metal-organic frameworks (MOFs). Whereas this chemistry is intensively explored for transition-metal and lanthanide ions, any related actinide compound has not received attention. In particular, the MOF chemistry of actinide ions in the lower oxidation states is underexplored. We herein report the synthesis, and structural and physical property characterization of a uranium(IV) quinoid-based MOF, [U(Cl2dhbq)2(H2O)2]·4H2O (1, Cl2dhbq2- = deprotonated 2,5-dichloro-3,6-dihydroxybenzoquinone). 1 is a rare example of a U(IV)-based coordination solid and the first material to incorporate bona fide reducible bridging ligands. Despite the anticipated thermodynamic driving force, no indications of valence tautomerism are evident from magnetometry, near-IR spectroscopy, and X-band electron paramagnetic resonance measurements. These initial results suggest that reduction potentials alone are insufficient as guidelines for the prediction of the occurrence of electron transfer in uranium-quinoid-based materials.

9.
Inorg Chem ; 57(9): 4934-4943, 2018 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-29389126

RESUMO

Two Cu2+ coordination polymers [CuCl(pyz)2](BF4) 1 and [CuBr(pyz)2](BF4) 2 (pyz = pyrazine) were synthesized in the family of quasi two-dimensional (2D) [Cu(pyz)2]2+ magnetic networks. The layer connectivity by monatomic halide ligands results in significantly shorter interlayer distances. Structures were determined by single-crystal X-ray diffraction. Temperature-dependent X-ray diffraction of 1 revealed rigid [Cu(pyz)2]2+ layers that do not expand between 5 K and room temperature, whereas the expansion along the c-axis amounts to 2%. The magnetic susceptibility of 1 and 2 shows a broad maximum at ∼8 K, indicating antiferromagnetic interactions within the [Cu(pyz)2]2+ layers. 2D Heisenberg model fits result in J∥ = 9.4(1) K for 1 and 8.9(1) K for 2. The interlayer coupling is much weaker with | J⊥| = 0.31(6) K for 1 and 0.52(9) K for 2. The electron density, experimentally determined and calculated by density functional theory, confirms the location of the singly occupied orbital (the magnetic orbital) in the tetragonal plane. The analysis of the spin density reveals a mainly σ-type exchange through pyrazine. Kinks in the magnetic susceptibility indicate the onset of long-range three-dimensional magnetic order below 4 K. The magnetic structures were determined by neutron diffraction. Magnetic Bragg peaks occur below TN = 3.9(1) K for 1 and 3.8(1) K for 2. The magnetic unit cell is doubled along the c-axis ( k = 0, 0, 0.5). The ordered magnetic moments are located in the tetragonal plane and amount to 0.76(8) µB/Cu2+ for 1 and 0.6(1) µB/Cu2+ for 2 at 1.5 K. The moments are coupled antiferromagnetically both in the ab plane and along the c-axis. The Cu2+ g-tensor was determined from electron spin resonance spectra as g x = 2.060(1), g z = 2.275(1) for 1 and g x = 2.057(1), g z = 2.272(1) for 2 at room temperature.

10.
RSC Adv ; 8(20): 11006-11013, 2018 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35541544

RESUMO

We report on a glass-nanocomposite material consisting of yttrium aluminum garnet (Y3Al5O12, YAG) nanocrystals co-doped with Yb3+, Tm3+ and Ho3+ ions as well as entrapped into a SiO2 xerogel. This 94YAG·5Yb2O3·0.8Tm2O3·0.2Ho2O3@SiO2 (abbr. YAG:YbTmHo@SiO2) nanocomposite material has been prepared by sol-gel procedure. Its structure and morphology has been characterized by means of X-ray diffraction (XRD) and scanning electron microscope (SEM) techniques as well as energy dispersive X-ray (EDX), X-ray photoelectron (XPS) and luminescence spectroscopies. The luminescent glass-nanocomposite exhibited an up-conversion effect under λ exc = 980 nm and emission when excited under 355 nm in steady-state conditions. Then time-resolved luminescence emission was observed, when the sample was excited at 290 and 355 nm by a pulse laser. Average decay times for the SiO2 matrix and for some transitions of the Tm3+ and Ho3+ dopants present in the YAG:YbTmHo@SiO2 material have been evaluated. The luminescent nanocomposite when excited under 290 or 355 nm wavelengths in both conditions emits blue light. However, the nanocomposite is promising as a single-source white-light phosphor owing to its up-conversion luminescence under 980 nm excitation. Such optical features make the studied material an alternative phosphor.

11.
Artigo em Inglês | MEDLINE | ID: mdl-25274524

RESUMO

The new tetrachloroaurate ethanol hydrate HAuCl4·0.65C2H5OH·1.35H2O was prepared from chloroauric acid trihydrate in ethanol. The compound crystallizes in the triclinic space group P \bar 1 (No. 2). The [AuCl4](-) units in the structure have approximately square-planar symmetry, forming chains parallel to the crystallographic b-axis direction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...