Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(16): 15379-15387, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37540827

RESUMO

Repulsive and long-range exciton-exciton interactions are crucial for the exploration of one-dimensional (1D) correlated quantum phases in the solid state. However, the experimental realization of nanoscale confinement of a 1D dipolar exciton has thus far been limited. Here, we demonstrate atomically precise lateral heterojunctions based at transitional-metal dichalcogenides (TMDCs) as a platform for 1D dipolar excitons. The dynamics and transport of the interfacial charge transfer excitons in a type II WSe2-WS1.16Se0.84 lateral heterostructure were spatially and temporally imaged using ultrafast transient reflection microscopy. The expansion of the exciton cloud driven by dipolar repulsion was found to be strongly density dependent and highly anisotropic. The interaction strength between the 1D excitons was determined to be ∼3.9 × 10-14 eV cm-2, corresponding to a dipolar length of 310 nm, which is a factor of 2-3 larger than the interlayer excitons at two-dimensional van der Waals vertical interfaces. These results suggest 1D dipolar excitons with large static in-plane dipole moments in lateral TMDC heterojunctions as an exciting system for investigating quantum many-body physics.

2.
Small ; 19(19): e2206444, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36772899

RESUMO

MA2 Z4 monolayers form a new class of hexagonal non-centrosymmetric materials hosting extraordinary spin-valley physics. While only two compounds (MoSi2 N4 and WSi2 N4 ) are recently synthesized, theory predicts interesting (opto)electronic properties of a whole new family of such two-dimensional (2D) materials. Here, the chemical trends of band gaps and spin-orbit splittings of bands in selected MSi2 Z4 (M = Mo, W; Z = N, P, As, Sb) compounds are studied from first-principles. Effective Bethe-Salpeter-equation-based calculations reveal high exciton binding energies. Evolution of excitonic energies under external magnetic field is predicted by providing their effective g-factors and diamagnetic coefficients, which can be directly compared to experimental values. In particular, large positive g-factors are predicted for excitons involving higher conduction bands. In view of these predictions, MSi2 Z4 monolayers yield a new platform to study excitons and are attractive for optoelectronic devices, also in the form of heterostructures. In addition, a spin-orbit induced bands inversion is observed in the heaviest studied compound, WSi2 Sb4 , a hallmark of its topological nature.

3.
Small ; 17(23): e2008153, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33955665

RESUMO

In van der Waals heterostructures of 2D transition-metal dichalcogenides (2D TMDCs) electron and hole states are spatially localized in different layers forming long-lived interlayer excitons. Here, the influence of additional electron or hole layers on the electronic properties of a MoS2 /WSe2 heterobilayer (HBL), which is a direct bandgap material, is investigated from first principles. Additional layers modify the interlayer hybridization, mostly affecting the quasiparticle energy and real-space extend of hole states at the Γ and electron states at the Q valleys. For a sufficient number of additional layers, the band edges move from K to Q or Γ, respectively. Adding electron layers to the HBL leads to more delocalized K and Q states, while Γ states do not extend much beyond the HBL, even when more hole layers are added. These results suggest a simple and yet powerful way to tune band edges and the real-space extent of the electron and hole wave functions in TMDC heterostructures, potentially affecting strongly the lifetime and dynamics of interlayer excitons.

4.
Chemistry ; 25(33): 7847-7851, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-30970151

RESUMO

In organic photovoltaics, porphyrins (PPs) are among the most promising compounds owing to their large absorption cross-section, wide spectral range, and stability. Nevertheless, a precise adjustment of absorption band positions to reach a full coverage of the so-called green gap has not been achieved yet. We demonstrate that a tuning of the PP Q- and Soret bands can be carried out by using a computational approach for which substitution patterns are optimized in silico. The most promising candidate structures were then synthesized. The experimental UV/Vis data for the solvated compounds were in excellent agreement with the theoretical predictions. By attaching further functionalities, which allow the use of PP chromophores as linkers for the assembly of metal-organic frameworks (MOFs), we were able to exploit packing effects resulting in pronounced redshifts, which allowed further optimization of the photophysical properties of PP assemblies. Finally, we use a layer-by-layer method to assemble the PP linkers into surface-mounted MOFs (SURMOFs), thus obtaining high optical quality, homogeneous and crystalline multilayer films. Experimental results are in full accord with the calculations, demonstrating the huge potential of computational screening methods in tailoring MOF and SURMOF photophysical properties.

5.
Phys Chem Chem Phys ; 21(2): 674-680, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30542683

RESUMO

Metal-organic frameworks (MOFs) are coordination networks with organic ligands containing potential voids. Some MOFs show pronounced structural flexibility that may result in closing and re-opening these pores. Here, we show that collective flexibility in a MOF-DUT-8(Ni) - is controlled by conformational isomerism. DUT-8(Ni), a pillared-layer MOF with Ni2 paddle-wheels, dabco pillars and naphthalene dicarboxylate (ndc) linkers, can crystallize in many conformational isomers that depend on the orientation of the non-linear ndc linkers with respect to each other. While the open form is compatible with several of these conformations, only one of them, with alternating linker orientations, is stable as the closed form. We show, by means of first principles calculations, that in the stable closed form, the appreciable lattice strain is compensated by London-dispersion forces between the ndc linkers that arrange with maximum overlap in a stacking order similar to the stacking in graphite. We substantiate these results by well-tempered metadynamics calculations on the DFT-based Born-Oppenheimer potential energy surface, by refined X-ray diffraction data and by nitrogen adsorption data obtained by experiment and grand-canonical Monte-Carlo simulations based on the DFT-optimized and PXRD-derived geometries. While the reported origin of flexibility cannot be generalized to all flexible MOFs, it offers a rational design concept of folding mechanisms in switchable MOFs by exploitation of the stabilization effect of linker stacking in the closed form.

6.
Front Chem ; 3: 2, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25699250

RESUMO

The spillover mechanism of molecular hydrogen on carbon nanotubes in the presence of catalytically active platinum clusters was critically and systematically investigated by using density-functional theory. Our simulation model includes a Pt4 cluster for the catalyst nanoparticle and curved and planar circumcoronene for two exemplary single-walled carbon nanotubes (CNT), the (10,10) CNT and one of large diameter, respectively. Our results show that the H2 molecule dissociates spontaneously on the Pt4 cluster. However, the dissociated H atoms have to overcome a barrier of more than 2 eV to migrate from the catalyst to the CNT, even if the Pt4 cluster is at full saturation with six adsorbed and dissociated hydrogen molecules. Previous investigations have shown that the mobility of hydrogen atoms on the CNT surface is hindered by a barrier. We find that instead the Pt4 catalyst may move along the outer surface of the CNT with activation energy of only 0.16 eV, and that this effect offers the possibility of full hydrogenation of the CNT. Thus, although we have not found a low-energy pathway to spillover onto the CNT, we suggest, based on our calculations and calculated data reported in the literature, that in the hydrogen-spillover process the observed saturation of the CNT at hydrogen background pressure occurs through mobile Pt nanoclusters, which move on the substrate more easily than the substrate-chemisorbed hydrogens, and deposit or reattach hydrogens in the process. Initial hydrogenation of the carbon substrate, however, is thermodynamically unfavoured, suggesting that defects should play a significant role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...