Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 186: 71-80, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37956903

RESUMO

Gap junction and ion channel remodeling occur early in Arrhythmogenic Cardiomyopathy (ACM), but their pathogenic consequences have not been elucidated. Here, we identified the arrhythmogenic substrate, consisting of propagation slowing and conduction block, in ACM models expressing two different desmosomal gene variants. Neonatal rat ventricular myocytes were transduced to express variants in genes encoding desmosomal proteins plakoglobin or plakophilin-2. Studies were performed in engineered cells and anisotropic tissues to quantify changes in conduction velocity, formation of unidirectional propagation, cell-cell electrical coupling, and ion currents. Conduction velocity decreased by 71% and 63% in the two ACM models. SB216763, an inhibitor of glycogen synthase kinase-3 beta, restored conduction velocity to near normal levels. Compared to control, both ACM models showed greater propensity for unidirectional conduction block, which increased further at greater stimulation frequencies. Cell-cell electrical conductance measured in cell pairs was reduced by 86% and 87% in the two ACM models. Computer modeling showed close correspondence between simulated and experimentally determined changes in conduction velocity. The simulation identified that reduced cell-cell electrical coupling was the dominant factor leading to slow conduction, while the combination of reduced cell-cell electrical coupling, reduced sodium current and inward rectifier potassium current explained the development of unidirectional block. Expression of two different ACM variants markedly reduced cell-cell electrical coupling and conduction velocity, and greatly increased the likelihood of developing unidirectional block - both key features of arrhythmogenesis. This study provides the first quantitative analysis of cellular electrophysiological changes leading to the substrate of reentrant arrhythmias in early stage ACM.


Assuntos
Cardiomiopatias , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Arritmias Cardíacas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Cardiomiopatias/metabolismo
2.
J Physiol ; 601(17): 3847-3868, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37470338

RESUMO

Cardiac voltage-gated sodium (Na+ ) channels (Nav 1.5) are crucial for myocardial electrical excitation. Recent studies based on single-channel recordings have suggested that Na+ channels interact functionally and exhibit coupled gating. However, the analysis of such recordings frequently relies on manual interventions, which can lead to bias. Here, we developed an automated pipeline to de-trend and idealize single-channel currents, and assessed possible functional interactions in cell-attached patch clamp experiments in HEK293 cells expressing human Nav 1.5 channels as well as in adult mouse and rabbit ventricular cardiomyocytes. Our pipeline involved de-trending individual sweeps by linear optimization using a library of predefined functions, followed by digital filtering and baseline offset. Subsequently, the processed sweeps were idealized based on the idea that the ensemble average of the idealized current identified by thresholds between current levels reconstructs at best the ensemble average current from the de-trended sweeps. This reconstruction was achieved by non-linear optimization. To ascertain functional interactions, we examined the distribution of the numbers of open channels at every time point during the activation protocol and compared it to the distribution expected for independent channels. We also examined whether the channels tended to synchronize their openings and closings. However, we did not uncover any solid evidence of such interactions in our recordings. Rather, our results indicate that wild-type Nav 1.5 channels are independent entities or exhibit only very weak functional interactions that are probably irrelevant under physiological conditions. Nevertheless, our unbiased analysis will be important for further studies examining whether auxiliary proteins potentiate functional Na+ channel interactions. KEY POINTS: Nav 1.5 channels are critical for cardiac excitation. They are part of macromolecular interacting complexes, and it was previously suggested that two neighbouring channels may functionally interact and exhibit coupled gating. Manual interventions when processing single-channel recordings can lead to bias and inaccurate data interpretation. We developed an automated pipeline to de-trend and idealize single-channel currents and assessed possible functional interactions between Nav 1.5 channels in HEK293 cells and cardiomyocytes during activation protocols using the cell-attached patch clamp technique. In recordings consisting of up to 1000 sweeps from the same patch, our analysis did not reveal any evidence of functional interactions or coupled gating between wild-type Nav 1.5 channels. Our unbiased analysis may be useful in further studies examining how Na+ channel interactions are affected by mutations and auxiliary proteins.


Assuntos
Miocárdio , Miócitos Cardíacos , Camundongos , Humanos , Animais , Coelhos , Células HEK293 , Miócitos Cardíacos/fisiologia
3.
PLoS Comput Biol ; 19(2): e1010895, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36791152

RESUMO

The basic building blocks of the electrophysiology of cardiomyocytes are ion channels integrated in the cell membranes. Close to the ion channels there are very strong electrical and chemical gradients. However, these gradients extend for only a few nano-meters and are therefore commonly ignored in mathematical models. The full complexity of the dynamics is modelled by the Poisson-Nernst-Planck (PNP) equations but these equations must be solved using temporal and spatial scales of nano-seconds and nano-meters. Here we report solutions of the PNP equations in a fraction of two abuttal cells separated by a tiny extracellular space. We show that when only the potassium channels of the two cells are open, a stationary solution is reached with the well-known Debye layer close to the membranes. When the sodium channels of one of the cells are opened, a very strong and brief electrochemical wave emanates from the channels. If the extracellular space is sufficiently small and the number of sodium channels is sufficiently high, the wave extends all the way over to the neighboring cell and may therefore explain cardiac conduction even at very low levels of gap junctional coupling.


Assuntos
Canais Iônicos , Modelos Teóricos , Canais Iônicos/metabolismo , Membrana Celular/metabolismo , Canais de Potássio
4.
Cells ; 11(21)2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36359872

RESUMO

Cardiac ephaptic coupling, a mechanism mediated by negative electric potentials occurring in the narrow intercellular clefts of intercalated discs, can influence action potential propagation by modulating the sodium current. Intercalated discs are highly tortuous due to the mingling of plicate and interplicate regions. To investigate the effect of their convoluted structure on ephaptic coupling, we refined our previous model of an intercalated disc and tested predefined folded geometries, which we parametrized by orientation, amplitude and number of folds. Ephaptic interactions (assessed by the minimal cleft potential and amplitude of the sodium currents) were reinforced by concentric folds. With increasing amplitude and number of concentric folds, the cleft potential became more negative during the sodium current transient. This is explained by the larger resistance between the cleft and the bulk extracellular space. In contrast, radial folds attenuated ephaptic interactions and led to a less negative cleft potential due to a decreased net cleft resistance. In conclusion, despite limitations inherent to the simplified geometries and sodium channel distributions investigated as well as simplifications regarding ion concentration changes, these results indicate that the folding pattern of intercalated discs modulates ephaptic coupling.


Assuntos
Coração , Miocárdio , Miocárdio/metabolismo , Potenciais de Ação/fisiologia , Sódio/metabolismo , Canais de Sódio
5.
J Physiol ; 600(14): 3287-3312, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35679256

RESUMO

Cardiomyocyte cultures exhibit spontaneous electrical and contractile activity, as in a natural cardiac pacemaker. In such preparations, beat rate variability exhibits features similar to those of heart rate variability in vivo. Mechanical deformations and forces feed back on the electrical properties of cardiomyocytes, but it is not fully elucidated how this mechano-electrical interplay affects beating variability in such preparations. Using stretchable microelectrode arrays, we assessed the effects of the myosin inhibitor blebbistatin and the non-selective stretch-activated channel blocker streptomycin on beating variability and on the response of neonatal or fetal murine ventricular cell cultures against deformation. Spontaneous electrical activity was recorded without stretch and upon predefined deformation protocols (5% uniaxial and 2% equibiaxial strain, applied repeatedly for 1 min every 3 min). Without stretch, spontaneous activity originated from the edge of the preparations, and its site of origin switched frequently in a complex manner across the cultures. Blebbistatin did not change mean beat rate, but it decreased the spatial complexity of spontaneous activity. In contrast, streptomycin did not exert any manifest effects. During the deformation protocols, beat rate increased transiently upon stretch but, paradoxically, also upon release. Blebbistatin attenuated the response to stretch, whereas this response was not affected by streptomycin. Therefore, our data support the notion that in a spontaneously firing network of cardiomyocytes, active force generation, rather than stretch-activated channels, is involved mechanistically in the complexity of the spatiotemporal patterns of spontaneous activity and in the stretch-induced acceleration of beating. KEY POINTS: Monolayer cultures of cardiac cells exhibit spontaneous electrical and contractile activity, as in a natural cardiac pacemaker. Beating variability in these preparations recapitulates the power-law behaviour of heart rate variability in vivo. However, the effects of mechano-electrical feedback on beating variability are not yet fully understood. Using stretchable microelectrode arrays, we examined the effects of the contraction uncoupler blebbistatin and the non-specific stretch-activated channel blocker streptomycin on beating variability and on stretch-induced changes of beat rate. Without stretch, blebbistatin decreased the spatial complexity of beating variability, whereas streptomycin had no effects. Both stretch and release increased beat rate transiently; blebbistatin attenuated the increase of beat rate upon stretch, whereas streptomycin had no effects. Active force generation contributes to the complexity of spatiotemporal patterns of beating variability and to the increase of beat rate upon mechanical deformation. Our study contributes to the understanding of how mechano-electrical feedback influences heart rate variability.


Assuntos
Miócitos Cardíacos , Nó Sinoatrial , Animais , Frequência Cardíaca/fisiologia , Camundongos , Microeletrodos , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Estreptomicina/farmacologia
6.
J Physiol ; 599(21): 4779-4811, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34533834

RESUMO

It has been proposed that when gap junctional coupling is reduced in cardiac tissue, action potential propagation can be supported via ephaptic coupling, a mechanism mediated by negative electric potentials occurring in narrow intercellular clefts of intercalated discs (IDs). Recent studies showed that sodium (Na+ ) channels form clusters near gap junction plaques in nanodomains called perinexi, where the ID cleft is even narrower. To examine the electrophysiological relevance of Na+ channel clusters being located in perinexi, we developed a 3D finite element model of two longitudinally abutting cardiomyocytes, with a central Na+ channel cluster on the ID membranes. When this cluster was located in the perinexus of a closely positioned gap junction plaque, varying perinexal width greatly modulated impulse transmission from one cell to the other, with narrow perinexi potentiating ephaptic coupling. This modulation occurred via the interplay of Na+ currents, extracellular potentials in the cleft and patterns of current flow within the cleft. In contrast, when the Na+ channel cluster was located remotely from the gap junction plaque, this modulation by perinexus width largely disappeared. Interestingly, the Na+ current in the ID membrane of the pre-junctional cell switched from inward to outward during excitation, thus contributing ions to the activating channels on the post-junctional ID membrane. In conclusion, these results indicate that the localization of Na+ channel clusters in the perinexi of gap junction plaques is crucial for ephaptic coupling, which is furthermore greatly modulated by perinexal width. These findings are relevant for a comprehensive understanding of cardiac excitation. KEY POINTS: Ephaptic coupling is a cardiac conduction mechanism involving nanoscale-level interactions between the sodium (Na+ ) current and the extracellular potential in narrow intercalated disc clefts. When gap junctional coupling is reduced, ephaptic coupling acts in conjunction with the classical cardiac conduction mechanism based on gap junctional current flow. In intercalated discs, Na+ channels form clusters that are preferentially located in the periphery of gap junction plaques, in nanodomains known as perinexi, but the electrophysiological role of these perinexi has never been examined. In our new 3D finite element model of two cardiac cells abutting each other with their intercalated discs, a Na+ channel cluster located inside a narrowed perinexus facilitated impulse transmission via ephaptic coupling. Our simulations demonstrate the role of narrowed perinexi as privileged sites for ephaptic coupling in pathological situations when gap junctional coupling is decreased.


Assuntos
Junções Comunicantes , Sódio , Potenciais de Ação , Íons , Miócitos Cardíacos
7.
Elife ; 102021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33729158

RESUMO

Acid-sensing ion channels (ASICs) are neuronal Na+ channels that are activated by a drop in pH. Their established physiological and pathological roles, involving fear behaviors, learning, pain sensation, and neurodegeneration after stroke, make them promising targets for future drugs. Currently, the ASIC activation mechanism is not understood. Here, we used voltage-clamp fluorometry (VCF) combined with fluorophore-quencher pairing to determine the kinetics and direction of movements. We show that conformational changes with the speed of channel activation occur close to the gate and in more distant extracellular sites, where they may be driven by local protonation events. Further, we provide evidence for fast conformational changes in a pathway linking protonation sites to the channel pore, in which an extracellular interdomain loop interacts via aromatic residue interactions with the upper end of a transmembrane helix and would thereby open the gate.


Assuntos
Canais Iônicos Sensíveis a Ácido/química , Conformação Molecular , Transdução de Sinais , Humanos , Cinética , Prótons
8.
Front Physiol ; 11: 589386, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250780

RESUMO

BACKGROUND: Nav1.5 cardiac Na+ channel mutations can cause arrhythmogenic syndromes. Some of these mutations exert a dominant negative effect on wild-type channels. Recent studies showed that Na+ channels can dimerize, allowing coupled gating. This leads to the hypothesis that allosteric interactions between Na+ channels modulate their function and that these interactions may contribute to the negative dominance of certain mutations. METHODS: To investigate how allosteric interactions affect microscopic and macroscopic channel function, we developed a modeling paradigm in which Markovian models of two channels are combined. Allosteric interactions are incorporated by modifying the free energies of the composite states and/or barriers between states. RESULTS: Simulations using two generic 2-state models (C-O, closed-open) revealed that increasing the free energy of the composite states CO/OC leads to coupled gating. Simulations using two 3-state models (closed-open-inactivated) revealed that coupled closings must also involve interactions between further composite states. Using two 6-state cardiac Na+ channel models, we replicated previous experimental results mainly by increasing the energies of the CO/OC states and lowering the energy barriers between the CO/OC and the CO/OO states. The channel model was then modified to simulate a negative dominant mutation (Nav1.5 p.L325R). Simulations of homodimers and heterodimers in the presence and absence of interactions showed that the interactions with the variant channel impair the opening of the wild-type channel and thus contribute to negative dominance. CONCLUSION: Our new modeling framework recapitulates qualitatively previous experimental observations and helps identifying possible interaction mechanisms between ion channels.

9.
J Am Coll Cardiol ; 75(17): 2140-2152, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32354382

RESUMO

BACKGROUND: Patients with long QT syndrome (LQTS) are predisposed to life-threatening arrhythmias. A delay in cardiac repolarization is characteristic of the disease. Pharmacotherapy, implantable cardioverter-defibrillators, and left cardiac sympathetic denervation are part of the current treatment options, but no targeted therapy for LQTS exists to date. Previous studies indicate that induced autoimmunity against the voltage-gated KCNQ1 K+ channels accelerates cardiac repolarization. OBJECTIVES: However, a causative relationship between KCNQ1 antibodies and the observed electrophysiological effects has never been demonstrated, and thus presents the aim of this study. METHODS: The authors purified KCNQ1 antibodies and performed whole-cell patch clamp experiments as well as single-channel recordings on Chinese hamster ovary cells overexpressing IKs channels. The effect of purified KCNQ1 antibodies on human cardiomyocytes derived from induced pluripotent stem cells was then studied. RESULTS: The study demonstrated that KCNQ1 antibodies underlie the previously observed increase in repolarizing IKs current. The antibodies shift the voltage dependence of activation and slow the deactivation of IKs. At the single-channel level, KCNQ1 antibodies increase the open time and probability of the channel. In models of LQTS type 2 (LQTS2) using human induced pluripotent stem cell-derived cardiomyocytes, KCNQ1 antibodies reverse the prolonged cardiac repolarization and abolish arrhythmic activities. CONCLUSIONS: Here, the authors provide the first direct evidence that KCNQ1 antibodies act as agonists on IKs channels. Moreover, KCNQ1 antibodies were able to restore alterations in cardiac repolarization and most importantly to suppress arrhythmias in LQTS2. KCNQ1 antibody therapy may thus present a novel promising therapeutic approach for LQTS2.


Assuntos
Autoanticorpos/sangue , Imunoterapia/métodos , Canal de Potássio KCNQ1/sangue , Síndrome do QT Longo/sangue , Síndrome do QT Longo/terapia , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Células HEK293 , Humanos , Canal de Potássio KCNQ1/química , Canal de Potássio KCNQ1/imunologia , Síndrome do QT Longo/imunologia , Potenciais da Membrana/fisiologia , Miócitos Cardíacos/imunologia , Miócitos Cardíacos/metabolismo , Estudo de Prova de Conceito , Estrutura Secundária de Proteína , Coelhos
10.
Front Cell Neurosci ; 14: 41, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180707

RESUMO

Acid-sensing ion channels (ASICs) are H+-activated neuronal Na+ channels. They are involved in fear behavior, learning, neurodegeneration after ischemic stroke and in pain sensation. ASIC activation has so far been studied only with fast pH changes, although the pH changes associated with many roles of ASICs are slow. It is currently not known whether slow pH changes can open ASICs at all. Here, we investigated to which extent slow pH changes can activate ASIC1a channels and induce action potential signaling. To this end, ASIC1a current amplitudes and charge transport in transfected Chinese hamster ovary cells, and ASIC-mediated action potential signaling in cultured cortical neurons were measured in response to defined pH ramps of 1-40 s duration from pH 7.4 to pH 6.6 or 6.0. A kinetic model of the ASIC1a current was developed and integrated into the Hodgkin-Huxley action potential model. Interestingly, whereas the ASIC1a current amplitude decreased with slower pH ramps, action potential firing was higher upon intermediate than fast acidification in cortical neurons. Indeed, fast pH changes (<4 s) induced short action potential bursts, while pH changes of intermediate speed (4-10 s) induced longer bursts. Slower pH changes (>10 s) did in many experiments not generate action potentials. Computer simulations corroborated these observations. We provide here the first description of ASIC function in response to defined slow pH changes. Our study shows that ASIC1a currents, and neuronal activity induced by ASIC1a currents, strongly depend on the speed of pH changes. Importantly, with pH changes that take >10 s to complete, ASIC1a activation is inefficient. Therefore, it is likely that currently unknown modulatory mechanisms allow ASIC activity in situations such as ischemia and inflammation.

11.
J Physiol ; 596(4): 563-589, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29210458

RESUMO

KEY POINTS: It has been proposed that ephaptic conduction, relying on interactions between the sodium (Na+ ) current and the extracellular potential in intercalated discs, might contribute to cardiac conduction when gap junctional coupling is reduced, but this mechanism is still controversial. In intercalated discs, Na+ channels form clusters near gap junction plaques, but the functional significance of these clusters has never been evaluated. In HEK cells expressing cardiac Na+ channels, we show that restricting the extracellular space modulates the Na+ current, as predicted by corresponding simulations accounting for ephaptic effects. In a high-resolution model of the intercalated disc, clusters of Na+ channels that face each other across the intercellular cleft facilitate ephaptic impulse transmission when gap junctional coupling is reduced. Thus, our simulations reveal a functional role for the clustering of Na+ channels in intercalated discs, and suggest that rearrangement of these clusters in disease may influence cardiac conduction. ABSTRACT: It has been proposed that ephaptic interactions in intercalated discs, mediated by extracellular potentials, contribute to cardiac impulse propagation when gap junctional coupling is reduced. However, experiments demonstrating ephaptic effects on the cardiac Na+ current (INa ) are scarce. Furthermore, Na+ channels form clusters around gap junction plaques, but the electrophysiological significance of these clusters has never been investigated. In patch clamp experiments with HEK cells stably expressing human Nav 1.5 channels, we examined how restricting the extracellular space modulates INa elicited by an activation protocol. In parallel, we developed a high-resolution computer model of the intercalated disc to investigate how the distribution of Na+ channels influences ephaptic interactions. Approaching the HEK cells to a non-conducting obstacle always increased peak INa at step potentials near the threshold of INa activation and decreased peak INa at step potentials far above threshold (7 cells, P = 0.0156, Wilcoxon signed rank test). These effects were consistent with corresponding control simulations with a uniform Na+ channel distribution. In the intercalated disc computer model, redistributing the Na+ channels into a central cluster of the disc potentiated ephaptic effects. Moreover, ephaptic impulse transmission from one cell to another was facilitated by clusters of Na+ channels facing each other across the intercellular cleft when gap junctional coupling was reduced. In conclusion, our proof-of-principle experiments demonstrate that confining the extracellular space modulates cardiac INa , and our simulations reveal the functional role of the aggregation of Na+ channels in the perinexus. These findings highlight novel concepts in the physiology of cardiac excitation.


Assuntos
Potenciais de Ação , Espaço Extracelular/fisiologia , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Sódio/metabolismo , Células HEK293 , Humanos , Modelos Teóricos , Miócitos Cardíacos/citologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Análise Espaço-Temporal
13.
Front Physiol ; 7: 496, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833567

RESUMO

Fibrotic myocardial remodeling is typically accompanied by the appearance of myofibroblasts (MFBs). In vitro, MFBs were shown to slow conduction and precipitate ectopic activity following gap junctional coupling to cardiomyocytes (CMCs). To gain further mechanistic insights into this arrhythmogenic MFB-CMC crosstalk, we performed numerical simulations in cell-based high-resolution two-dimensional tissue models that replicated experimental conditions. Cell dimensions were determined using confocal microscopy of single and co-cultured neonatal rat ventricular CMCs and MFBs. Conduction was investigated as a function of MFB density in three distinct cellular tissue architectures: CMC strands with endogenous MFBs, CMC strands with coating MFBs of two different sizes, and CMC strands with MFB inserts. Simulations were performed to identify individual contributions of heterocellular gap junctional coupling and of the specific electrical phenotype of MFBs. With increasing MFB density, both endogenous and coating MFBs slowed conduction. At MFB densities of 5-30%, conduction slowing was most pronounced in strands with endogenous MFBs due to the MFB-dependent increase in axial resistance. At MFB densities >40%, very slow conduction and spontaneous activity was primarily due to MFB-induced CMC depolarization. Coating MFBs caused non-uniformities of resting membrane potential, which were more prominent with large than with small MFBs. In simulations of MFB inserts connecting two CMC strands, conduction delays increased with increasing insert lengths and block appeared for inserts >1.2 mm. Thus, electrophysiological properties of engineered CMC-MFB co-cultures depend on MFB density, MFB size and their specific positioning in respect to CMCs. These factors may influence conduction characteristics in the heterocellular myocardium.

14.
J Am Coll Cardiol ; 68(17): 1881-1894, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27765191

RESUMO

BACKGROUND: Antiarrhythmic drugs are widely used to treat patients with atrial fibrillation (AF), but the mechanisms conveying their variable effectiveness are not known. Recent data suggested that paired like homeodomain-2 transcription factor (PITX2) might play an important role in regulating gene expression and electrical function of the adult left atrium (LA). OBJECTIVES: After determining LA PITX2 expression in AF patients requiring rhythm control therapy, the authors assessed the effects of Pitx2c on LA electrophysiology and the effect of antiarrhythmic drugs. METHODS: LA PITX2 messenger ribonucleic acid (mRNA) levels were measured in 95 patients undergoing thoracoscopic AF ablation. The effects of flecainide, a sodium (Na+)-channel blocker, and d,l-sotalol, a potassium channel blocker, were studied in littermate mice with normal and reduced Pitx2c mRNA by electrophysiological study, optical mapping, and patch clamp studies. PITX2-dependent mechanisms of antiarrhythmic drug action were studied in human embryonic kidney (HEK) cells expressing human Na channels and by modeling human action potentials. RESULTS: Flecainide 1 µmol/l was more effective in suppressing atrial arrhythmias in atria with reduced Pitx2c mRNA levels (Pitx2c+/-). Resting membrane potential was more depolarized in Pitx2c+/- atria, and TWIK-related acid-sensitive K+ channel 2 (TASK-2) gene and protein expression were decreased. This resulted in enhanced post-repolarization refractoriness and more effective Na-channel inhibition. Defined holding potentials eliminated differences in flecainide's effects between wild-type and Pitx2c+/- atrial cardiomyocytes. More positive holding potentials replicated the increased effectiveness of flecainide in blocking human Nav1.5 channels in HEK293 cells. Computer modeling reproduced an enhanced effectiveness of Na-channel block when resting membrane potential was slightly depolarized. CONCLUSIONS: PITX2 mRNA modulates atrial resting membrane potential and thereby alters the effectiveness of Na-channel blockers. PITX2 and ion channels regulating the resting membrane potential may provide novel targets for antiarrhythmic drug development and companion therapeutics in AF.


Assuntos
Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/fisiopatologia , Flecainida/uso terapêutico , Proteínas de Homeodomínio/fisiologia , Potenciais da Membrana/fisiologia , Fatores de Transcrição/fisiologia , Bloqueadores do Canal de Sódio Disparado por Voltagem/uso terapêutico , Adulto , Idoso , Animais , Fenômenos Eletrofisiológicos , Feminino , Regulação da Expressão Gênica , Átrios do Coração/fisiopatologia , Proteínas de Homeodomínio/genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Fatores de Transcrição/genética , Proteína Homeobox PITX2
15.
J Physiol ; 594(9): 2537-53, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26563830

RESUMO

KEY POINTS: Beat-to-beat alternation (alternans) of the cardiac action potential duration is known to precipitate life-threatening arrhythmias and can be driven by the kinetics of voltage-gated membrane currents or by instabilities in intracellular calcium fluxes. To prevent alternans and associated arrhythmias, suitable markers must be developed to quantify the susceptibility to alternans; previous theoretical studies showed that the eigenvalue of the alternating eigenmode represents an ideal marker of alternans. Using rabbit ventricular myocytes, we show that this eigenvalue can be estimated in practice by pacing these cells at intervals varying stochastically. We also show that stochastic pacing permits the estimation of further markers distinguishing between voltage-driven and calcium-driven alternans. Our study opens the perspective to use stochastic pacing during clinical investigations and in patients with implanted pacing devices to determine the susceptibility to, and the type of alternans, which are both important to guide preventive or therapeutic measures. ABSTRACT: Alternans of the cardiac action potential (AP) duration (APD) is a well-known arrhythmogenic mechanism. APD depends on several preceding diastolic intervals (DIs) and APDs, which complicates the prediction of alternans. Previous theoretical studies pinpointed a marker called λalt that directly quantifies how an alternating perturbation persists over successive APs. When the propensity to alternans increases, λalt decreases from 0 to -1. Our aim was to quantify λalt experimentally using stochastic pacing and to examine whether stochastic pacing allows discriminating between voltage-driven and Ca(2+) -driven alternans. APs were recorded in rabbit ventricular myocytes paced at cycle lengths (CLs) decreasing progressively and incorporating stochastic variations. Fitting APD with a function of two previous APDs and CLs permitted us to estimate λalt along with additional markers characterizing whether the dependence of APD on previous DIs or CLs is strong (typical for voltage-driven alternans) or weak (Ca(2+) -driven alternans). During the recordings, λalt gradually decreased from around 0 towards -1. Intermittent alternans appeared when λalt reached -0.8 and was followed by sustained alternans. The additional markers detected that alternans was Ca(2+) driven in control experiments and voltage driven in the presence of ryanodine. This distinction could be made even before alternans was manifest (specificity/sensitivity >80% for -0.4 > λalt  > -0.5). These observations were confirmed in a mathematical model of a rabbit ventricular myocyte. In conclusion, stochastic pacing allows the practical estimation of λalt to reveal the onset of alternans and distinguishes between voltage-driven and Ca(2+) -driven mechanisms, which is important since these two mechanisms may precipitate arrhythmias in different manners.


Assuntos
Técnicas Eletrofisiológicas Cardíacas , Miócitos Cardíacos/fisiologia , Potenciais de Ação , Animais , Ventrículos do Coração/citologia , Masculino , Modelos Biológicos , Coelhos
16.
Front Cell Dev Biol ; 3: 58, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26442264

RESUMO

Modern concepts for the treatment of myocardial diseases focus on novel cell therapeutic strategies involving stem cell-derived cardiomyocytes (SCMs). However, functional integration of SCMs requires similar electrophysiological properties as primary cardiomyocytes (PCMs) and the ability to establish intercellular connections with host myocytes in order to contribute to the electrical and mechanical activity of the heart. The aim of this project was to investigate the properties of cardiac conduction in a co-culture approach using SCMs and PCMs in cultured cell strands. Murine embryonic SCMs were pooled with fetal ventricular cells and seeded in predefined proportions on microelectrode arrays to form patterned strands of mixed cells. Conduction velocity (CV) was measured during steady state pacing. SCM excitability was estimated from action potentials measured in single cells using the patch clamp technique. Experiments were complemented with computer simulations of conduction using a detailed model of cellular architecture in mixed cell strands. CV was significantly lower in strands composed purely of SCMs (5.5 ± 1.5 cm/s, n = 11) as compared to PCMs (34.9 ± 2.9 cm/s, n = 21) at similar refractoriness (100% SCMs: 122 ± 25 ms, n = 9; 100% PCMs: 139 ± 67 ms, n = 14). In mixed strands combining both cell types, CV was higher than in pure SCMs strands, but always lower than in 100% PCM strands. Computer simulations demonstrated that both intercellular coupling and electrical excitability limit CV. These data provide evidence that in cultures of murine ventricular cardiomyocytes, SCMs cannot restore CV to control levels resulting in slow conduction, which may lead to reentry circuits and arrhythmias.

17.
Circ Cardiovasc Genet ; 7(6): 771-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25210054

RESUMO

BACKGROUND: Over the past 15 years, a myriad of mutations in genes encoding cardiac ion channels and ion channel interacting proteins have been linked to a long list of inherited atrial and ventricular arrhythmias. The purpose of this study was to identify the genetic and functional determinants underlying exercise-induced polymorphic ventricular arrhythmia present in a large multigenerational family. METHODS AND RESULTS: A large 4-generation family presenting with exercise-induced polymorphic ventricular arrhythmia, which was followed for 10 years, was clinically characterized. A novel SCN5A mutation was identified via whole exome sequencing and further functionally evaluated by patch-clamp studies using human embryonic kidney 293 cells. Of 37 living family members, a total of 13 individuals demonstrated ≥50 multiformic premature ventricular complexes or ventricular tachycardia upon exercise stress tests when sinus rate exceeded 99±17 beats per minute. Sudden cardiac arrest occurred in 1 individual during follow-up. Exome sequencing identified a novel missense mutation (p.I141V) in a highly conserved region of the SCN5A gene, encoding the Nav1.5 sodium channel protein that cosegregated with the arrhythmia phenotype. The mutation p.I141V shifted the activation curve toward more negative potentials and increased the window current, whereas action potential simulations suggested that it lowered the excitability threshold of cardiac cells. CONCLUSIONS: Gain-of-function of Nav1.5 may cause familial forms of exercise-induced polymorphic ventricular arrhythmias.


Assuntos
Canal de Sódio Disparado por Voltagem NAV1.5/genética , Taquicardia Ventricular/genética , Potenciais de Ação , Adulto , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Criança , Pré-Escolar , Morte Súbita Cardíaca , Teste de Esforço , Feminino , Seguimentos , Genótipo , Células HEK293 , Humanos , Desequilíbrio de Ligação , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Linhagem , Fenótipo , Células de Purkinje/fisiologia , Taquicardia Ventricular/diagnóstico por imagem , Ultrassonografia
18.
J Mol Cell Cardiol ; 76: 46-54, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25128085

RESUMO

Altered gap junctional coupling potentiates slow conduction and arrhythmias. To better understand how heterogeneous connexin expression affects conduction at the cellular scale, we investigated conduction in tissue consisting of two cardiomyocyte populations expressing different connexin levels. Conduction was mapped using microelectrode arrays in cultured strands of foetal murine ventricular myocytes with predefined contents of connexin 43 knockout (Cx43KO) cells. Corresponding computer simulations were run in randomly generated two-dimensional tissues mimicking the cellular architecture of the strands. In the cultures, the relationship between conduction velocity (CV) and Cx43KO cell content was nonlinear. CV first decreased significantly when Cx43KO content was increased from 0 to 50%. When the Cx43KO content was ≥60%, CV became comparable to that in 100% Cx43KO strands. Co-culturing Cx43KO and wild-type cells also resulted in significantly more heterogeneous conduction patterns and in frequent conduction blocks. The simulations replicated this behaviour of conduction. For Cx43KO contents of 10-50%, conduction was slowed due to wavefront meandering between Cx43KO cells. For Cx43KO contents ≥60%, clusters of remaining wild-type cells acted as electrical loads that impaired conduction. For Cx43KO contents of 40-60%, conduction exhibited fractal characteristics, was prone to block, and was more sensitive to changes in ion currents compared to homogeneous tissue. In conclusion, conduction velocity and stability behave in a nonlinear manner when cardiomyocytes expressing different connexin amounts are combined. This behaviour results from heterogeneous current-to-load relationships at the cellular level. Such behaviour is likely to be arrhythmogenic in various clinical contexts in which gap junctional coupling is heterogeneous.


Assuntos
Conexina 43/metabolismo , Sistema de Condução Cardíaco/fisiopatologia , Potenciais de Ação , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatologia , Conexina 43/genética , Expressão Gênica , Camundongos Knockout , Contração Miocárdica , Miócitos Cardíacos/metabolismo
20.
J Cardiovasc Electrophysiol ; 24(9): 1037-46, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23692053

RESUMO

Hundreds of genetic variants in SCN5A, the gene coding for the pore-forming subunit of the cardiac sodium channel, Na(v) 1.5, have been described in patients with cardiac channelopathies as well as in individuals from control cohorts. The aim of this study was to characterize the biophysical properties of 2 naturally occurring Na(v) 1.5 variants, p.R689H and p.R689C, found in patients with cardiac arrhythmias and in control individuals. In addition, this study was motivated by the finding of the variant p.R689H in a family with sudden cardiac death (SCD) in children. When expressed in HEK293 cells, most of the sodium current (I(Na)) biophysical properties of both variants were indistinguishable from the wild-type (WT) channels. In both cases, however, an ∼2-fold increase of the tetrodotoxin-sensitive late I(Na) was observed. Action potential simulations and reconstruction of pseudo-ECGs demonstrated that such a subtle increase in the late I(Na) may prolong the QT interval in a nonlinear fashion. In conclusion, despite the fact that the causality link between p.R689H and the phenotype of the studied family cannot be demonstrated, this study supports the notion that subtle alterations of Na(v) 1.5 variants may increase the risk for cardiac arrhythmias.


Assuntos
Arginina/genética , Arritmias Cardíacas/diagnóstico , Arritmias Cardíacas/genética , Variação Genética/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Arritmias Cardíacas/fisiopatologia , Eletrocardiografia/métodos , Células HEK293 , Humanos , Lactente , Recém-Nascido , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...