Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Med ; 53(2)2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38186319

RESUMO

Although some clinical studies have reported increased mitochondrial respiration in patients with fatty liver and early non­alcoholic steatohepatitis (NASH), there is a lack of in vitro models of non­alcoholic fatty liver disease (NAFLD) with similar findings. Despite being the most commonly used immortalized cell line for in vitro models of NAFLD, HepG2 cells exposed to free fatty acids (FFAs) exhibit a decreased mitochondrial respiration. On the other hand, the use of HepaRG cells to study mitochondrial respiratory changes following exposure to FFAs has not yet been fully explored. Therefore, the present study aimed to assess cellular energy metabolism, particularly mitochondrial respiration, and lipotoxicity in FFA­treated HepaRG and HepG2 cells. HepaRG and HepG2 cells were exposed to FFAs, followed by comparative analyses that examained cellular metabolism, mitochondrial respiratory enzyme activities, mitochondrial morphology, lipotoxicity, the mRNA expression of selected genes and triacylglycerol (TAG) accumulation. FFAs stimulated mitochondrial respiration and glycolysis in HepaRG cells, but not in HepG2 cells. Stimulated complex I, II­driven respiration and ß­oxidation were linked to increased complex I and II activities in FFA­treated HepaRG cells, but not in FFA­treated HepG2 cells. Exposure to FFAs disrupted mitochondrial morphology in both HepaRG and HepG2 cells. Lipotoxicity was induced to a greater extent in FFA­treated HepaRG cells than in FFA­treated HepG2 cells. TAG accumulation was less prominent in HepaRG cells than in HepG2 cells. On the whole, the present study demonstrates that stimulated mitochondrial respiration is associated with lipotoxicity in FFA­treated HepaRG cells, but not in FFA­treated HepG2 cells. These findings suggest that HepaRG cells are more suitable for assessing mitochondrial respiratory adaptations in the developed in vitro model of early­stage NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Células Hep G2 , Mitocôndrias , Respiração , Linhagem Celular , Ácidos Graxos não Esterificados , Triglicerídeos
2.
Cas Lek Cesk ; 162(5): 194-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37923561

RESUMO

Aging is a process of gradual decline in the functional capacity of the human body that leads to a significant increase in the risk of death over time. Although it is a process universal to all animals, its rate is not the same. Biomarkers of aging aim to better describe the aging process at the level of the individual, organ, tissue, or single cell. They are used to estimate the rate of aging and predict the probability of death. They are good indication of the current state of the organism and are more accurate in predicting a person's susceptibility to disease, its progression and the likelihood of complications and death. Simple biomarkers measure only one parameter or a narrow group of related parameters that have a known association with age, in human or in a laboratory model. They can be divided into molecular (based on features of aging), functional (describing decreasing functional capacity during aging) and anthropometric (describing structural changes). Composite biomarkers are the most comprehensive way of measuring biological age. They combine a large amount of data, which they evaluate using algorithms often based on artificial intelligence. The most widely used method for measuring biological age in composite biomarkers is the epigenetic clock. The aim of this article is to review the many existing markers of aging and describe their relationship to aging.


Assuntos
Envelhecimento , Inteligência Artificial , Animais , Humanos , Biomarcadores , Epigenômica
3.
Toxicol Sci ; 196(2): 200-217, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37632784

RESUMO

Carvedilol is a widely used beta-adrenoreceptor antagonist for multiple cardiovascular indications; however, it may induce cholestasis in patients, but the mechanism for this effect is unclear. Carvedilol also prevents the development of various forms of experimental liver injury, but its effect on nonalcoholic steatohepatitis (NASH) is largely unknown. In this study, we determined the effect of carvedilol (10 mg/kg/day p.o.) on bile formation and bile acid (BA) turnover in male C57BL/6 mice consuming either a chow diet or a western-type NASH-inducing diet. BAs were profiled by liquid chromatography-mass spectrometry and BA-related enzymes, transporters, and regulators were evaluated by western blot analysis and qRT-PCR. In chow diet-fed mice, carvedilol increased plasma concentrations of BAs resulting from reduced BA uptake to hepatocytes via Ntcp transporter downregulation. Inhibition of the ß-adrenoreceptor-cAMP-Epac1-Ntcp pathway by carvedilol may be the post-transcriptional mechanism underlying this effect. In contrast, carvedilol did not worsen the deterioration of BA homeostasis accompanying NASH; however, it shifted the spectra of BAs toward more hydrophilic and less toxic α-muricholic and hyocholic acids. This positive effect of carvedilol was associated with a significant attenuation of liver steatosis, inflammation, and fibrosis in NASH mice. In conclusion, our results indicate that carvedilol may increase BAs in plasma by modifying their liver transport. In addition, carvedilol provided significant hepatoprotection in a NASH murine model without worsening BA accumulation. These data suggest beneficial effects of carvedilol in patients at high risk for developing NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácidos e Sais Biliares/metabolismo , Carvedilol/farmacologia , Carvedilol/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Proteínas de Membrana Transportadoras/metabolismo , Homeostase
4.
Biogerontology ; 24(6): 937-955, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37523061

RESUMO

Aging is a natural process of gradual decrease in physical and mental capacity. Biological age (accumulation of changes and damage) and chronological age (years lived) may differ. Biological age reflects the risk of various types of disease and death from any cause. We selected potential biomarkers of aging - telomerase, AGEs, GDF11 and 15 (growth differentiation factor 11/15), sirtuin 1, NAD+ (nicotinamide adenine dinucleotide), inflammasome NLRP3, DNA/RNA damage, and klotho to investigate changes in their levels depending on age and sex. We included 169 healthy volunteers and divided them into groups according to age (under 35; 35-50; over 50) and sex (male, female; male and female under 35; 35-50, over 50). Markers were analyzed using commercial ELISA kits. We found differences in values depending on age and gender. GDF15 increased with age (under 30 and 35-50 p < 0.002; 35-50 and over 50; p < 0.001; under 35 and over 50; p < 0.001) as well as GDF11 (35-50 and over 50; p < 0.03; under 35 and over 50; p < 0.02), AGEs (under 30 and 35-50; p < 0.005), NLRP3 (under 35 over 50; p < 0.03), sirtuin 1 (35-50 and over 50; p < 0.0001; under 35 and over 50; p < 0.004). AGEs and GDF11 differed between males and females. Correlations were identified between individual markers, markers and age, and markers and sex. Markers that reflect the progression of biological aging vary with age (GDF15, GDF11, AGEs, NLRP3, sirtuin) and sex (AGEs, GDF11). Their levels could be used in clinical practice, determining biological age, risk of age-related diseases and death of all-causes, and initiating or contraindicating a therapy in the elderly based on the patient's health status.


Assuntos
NAD , Telomerase , Humanos , Masculino , Feminino , Idoso , Proteína 3 que Contém Domínio de Pirina da Família NLR , Sirtuína 1 , Envelhecimento/genética , Fatores de Diferenciação de Crescimento/metabolismo , Biomarcadores , Nível de Saúde , Produtos Finais de Glicação Avançada , DNA , Proteínas Morfogenéticas Ósseas
5.
Cells ; 12(9)2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37174672

RESUMO

The mitochondrial permeability transition pore (MPTP) is a calcium-dependent, ion non-selective membrane pore with a wide range of functions. Although the MPTP has been studied for more than 50 years, its molecular structure remains unclear. Short-term (reversible) opening of the MPTP protects cells from oxidative damage and enables the efflux of Ca2+ ions from the mitochondrial matrix and cell signaling. However, long-term (irreversible) opening induces processes leading to cell death. Ca2+ ions, reactive oxygen species, and changes in mitochondrial membrane potential regulate pore opening. The sensitivity of the pore to Ca2+ ions changes as an organism ages, and MPTP opening plays a key role in the pathogenesis of many diseases. Most studies of the MPTP have focused on elucidating its molecular structure. However, understanding the mechanisms that will inhibit the MPTP may improve the treatment of diseases associated with its opening. To evaluate the functional state of the MPTP and its inhibitors, it is therefore necessary to use appropriate methods that provide reproducible results across laboratories. This review summarizes our current knowledge of the function and regulation of the MPTP. The latter part of the review introduces two optimized methods for evaluating the functional state of the pore under standardized conditions.


Assuntos
Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Morte Celular
7.
Cas Lek Cesk ; 161(1): 11-16, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35354289

RESUMO

Aging is a process of gradually reducing abilities and functional capacities of the organism. It is a universal process with a considerable degree of variability that is characteristic of all higher animals. Among the theories of ageing, the theory of damage accumulation, which integrates the mechanisms of ageing known to date, is currently widely accepted. This theory is based on pathophysiological processes, injurious changes can occur in the human body. These changes can be understood as damage. Due to the continuous accumulation of damage, the whole system is subsequently deteriorated. The aim of the present work is to characterize the basic pathophysiological mechanisms of aging (damage) in the light of current scientific knowledge and to show them in their hierarchical context.


Assuntos
Envelhecimento , Animais , Humanos
8.
Arch Physiol Biochem ; 128(4): 985-992, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32208934

RESUMO

CONTEXT: Monoestolides belonging to the fatty acid-hydroxy fatty acid (FAHFA) family have recently emerged as promising insulin sensitizers. OBJECTIVE: To investigate and compare impact of two selected FAHFA isomers, namely 9-hexadecanoyloxy-octadecanoic acid [9-PAHSA] and 9-(9Z-octadecenoyloxy)-octadecanoic acid [9-OAHSA], on intact livers in C57BL/6J mice. MATERIALS AND METHODS: Short-term in vivo study with intragastric gavage of 13 mg/kg of substances. Morphological, biochemical and high-resolution respirometric assessment of plasma and liver tissue or homogenates thereof. RESULTS: The 9-OAHSA-gavaged mice had the highest final total body weight, the lowest free fatty acid circulating levels and the highest plasma activities of both ALT and AST. No significant changes of ambient glycaemia were found, however 9-PAHSA-gavaged mice tended to have lower glycaemia than other animals. Respirometry proved no substance-dependent differences. DISCUSSION AND CONCLUSION: 9-PAHSA was more metabolically beneficial and less hepatotoxic than 9-OAHSA. Bioenergetic machinery of liver homogenates seemed unaffected at our FAHFA dose.


Assuntos
Ácidos Graxos , Insulina , Animais , Fígado , Camundongos , Camundongos Endogâmicos C57BL
9.
J Vis Exp ; (174)2021 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-34459820

RESUMO

Mitochondrial substrate flux is a distinguishing characteristic of each cell type, and changes in its components such as transporters, channels, or enzymes are involved in the pathogenesis of several diseases. Mitochondrial substrate flux can be studied using intact cells, permeabilized cells, or isolated mitochondria. Investigating intact cells encounters several problems due to simultaneous oxidation of different substrates. Besides, several cell types contain internal stores of different substrates that complicate results interpretation. Methods such as mitochondrial isolation or using permeabilizing agents are not easily reproducible. Isolating pure mitochondria with intact membranes in sufficient amounts from small samples is problematic. Using non-selective permeabilizers causes various degrees of unavoidable mitochondrial membrane damage. Recombinant perfringolysin O (rPFO) was offered as a more appropriate permeabilizer, thanks to its ability to selectively permeabilize plasma membrane without affecting mitochondrial integrity. When used in combination with microplate respirometry, it allows testing the flux of several mitochondrial substrates with enough replicates within one experiment while using a minimal number of cells. In this work, the protocol describes a method to compare mitochondrial substrate flux of two different cellular phenotypes or genotypes and can be customized to test various mitochondrial substrates or inhibitors.


Assuntos
Toxinas Bacterianas , Respiração Celular , Toxinas Bacterianas/metabolismo , Proteínas Hemolisinas/metabolismo , Mitocôndrias/metabolismo , Consumo de Oxigênio
10.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199098

RESUMO

Mitochondria play an essential role in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Previously, we found that succinate-activated respiration was the most affected mitochondrial parameter in mice with mild NAFLD. In this study, we focused on the role of succinate dehydrogenase (SDH) in NAFLD pathogenesis. To induce the progression of NAFLD to nonalcoholic steatohepatitis (NASH), C57BL/6J mice were fed a Western-style diet (WD) or control diet for 30 weeks. NAFLD severity was evaluated histologically and the expression of selected proteins and genes was assessed. Mitochondrial respiration was measured by high-resolution respirometry. Liver redox status was assessed using glutathione, malondialdehyde, and mitochondrial production of reactive oxygen species (ROS). Metabolomic analysis was performed by GC/MS. WD consumption for 30 weeks led to reduced succinate-activated respiration. We also observed decreased SDH activity, decreased expression of the SDH activator sirtuin 3, decreased gene expression of SDH subunits, and increased levels of hepatic succinate, an important signaling molecule. Succinate receptor 1 (SUCNR1) gene and protein expression were reduced in the livers of WD-fed mice. We did not observe signs of oxidative damage compared to the control group. The changes observed in WD-fed mice appear to be adaptive to prevent mitochondrial respiratory chain overload and massive ROS production.


Assuntos
Dieta Ocidental , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Oxirredução , Estresse Oxidativo , Ácido Succínico/metabolismo , Animais , Apoptose , Biomarcadores , Respiração Celular , Modelos Animais de Doenças , Suscetibilidade a Doenças , Fibrose , Metaboloma , Metabolômica/métodos , Camundongos , Hepatopatia Gordurosa não Alcoólica/patologia , Succinato Desidrogenase/metabolismo
11.
Acta Medica (Hradec Kralove) ; 64(1): 1-7, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855952

RESUMO

Non-Alcoholic Fatty Liver Disease (NAFLD) is one of the most important causes of liver disease worldwide leading the foreground cause of liver transplantation. Recently miRNAs, small non-coding molecules were identified as an important player in the negative translational regulation of many protein-coding genes involved in hepatic metabolism. Visceral adipose tissue was found to take part in lipid and glucose metabolism and to release many inflammatory mediators that may contribute to progression of NAFLD from simple steatosis to Non-Alcoholic SteatoHepatitis. Since visceral adipose tissue enlargement and dysregulated levels of miRNAs were observed in patients with NAFLD, the aim of this paper is to reflect the current knowledge of the role of miRNAs released from visceral adipose tissue and NAFLD.


Assuntos
Gordura Intra-Abdominal/metabolismo , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Humanos
12.
Biochem Pharmacol ; 176: 113902, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32156660

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer and the fourth most frequent cause of cancer-related death worldwide. Sorafenib is the first line recommended therapy for patients with locally advanced/metastatic HCC. The low response rate is attributed to intrinsic resistance of HCC cells to Sorafenib. The potential resistance to Sorafenib-induced cell death is multifactorial and involves all hallmarks of cancer. However, the presence of sub-therapeutic dose can negatively influence the antitumoral properties of the drug. In this sense, the present study showed that the sub-optimal Sorafenib concentration (10 nM) was associated with activation of caspase-9, AMP-activated protein kinase (AMPK), sustained autophagy, peroxisome proliferator-activated receptor-coactivator 1α (PGC-1α) and mitochondrial function in HepG2 cells. The increased mitochondrial respiration by Sorafenib (10 nM) was also observed in permeabilized HepG2 cells, but not in isolated rat mitochondria, which suggests the involvement of an upstream component in this regulatory mechanism. The basal glycolysis was dose dependently increased at early time point studied (6 h). Interestingly, Sorafenib increased nitric oxide (NO) generation that played an inhibitory role in mitochondrial respiration in sub-therapeutic dose of Sorafenib. The administration of sustained therapeutic dose of Sorafenib (10 µM, 24 h) induced mitochondrial dysfunction and dropped basal glycolysis derived acidification, as well as increased oxidative stress and apoptosis in HepG2. In conclusion, the accurate control of the administered dose of Sorafenib is relevant for the potential prosurvival or proapoptotic properties induced by the drug in liver cancer cells.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Mitocôndrias Hepáticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Caspase 9/metabolismo , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Mitocôndrias Hepáticas/metabolismo , Óxido Nítrico/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Ratos Wistar
13.
Int J Mol Sci ; 21(3)2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32046101

RESUMO

Maladaptation of mitochondrial oxidative flux seems to be a considerable feature of nonalcoholic fatty liver disease (NAFLD). The aim of this work was to induce NAFLD in mice fed a Western-style diet (WD) and to evaluate liver mitochondrial functions. Experiments were performed on male C57BL/6J mice fed with a control diet or a WD for 24 weeks. Histological changes in liver and adipose tissue as well as hepatic expression of fibrotic and inflammatory genes and proteins were evaluated. The mitochondrial respiration was assessed by high-resolution respirometry. Oxidative stress was evaluated by measuring lipoperoxidation, glutathione, and reactive oxygen species level. Feeding mice a WD induced adipose tissue inflammation and massive liver steatosis accompanied by mild inflammation and fibrosis. We found decreased succinate-activated mitochondrial respiration and decreased succinate dehydrogenase (SDH) activity in the mice fed a WD. The oxidative flux with other substrates was not affected. We observed increased ketogenic capacity, but no impact on the capacity for fatty acid oxidation. We did not confirm the presence of oxidative stress. Mitochondria in this stage of the disease are adapted to increased substrate flux. However, inhibition of SDH can lead to the accumulation of succinate, an important signaling molecule associated with inflammation, fibrosis, and carcinogenesis.


Assuntos
Peroxidação de Lipídeos , Mitocôndrias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Glutationa/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/etiologia , Succinato Desidrogenase/metabolismo
14.
Cas Lek Cesk ; 158(3-4): 141-146, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31416322

RESUMO

Abundant drinking of fluids at any occasion became popular in wealthy society in last decades. It is referred to asserted beneficial health effects, but rationale of these recommendations is disputed in expert environment as hardly traceable and tenable. Authors of the article analyse theoretical issues as well as empiric literary evidence for the current popular recommendation. They find them unfounded and difficult to be defended and the risks of transitive hypo-hydration overestimated. Moreover, they alert true risks of water poisoning we meet not quite rarely in common practice.


Assuntos
Desidratação , Desequilíbrio Hidroeletrolítico , Ingestão de Líquidos , Medicina Baseada em Evidências , Humanos , Equilíbrio Hidroeletrolítico
15.
Gen Physiol Biophys ; 38(4): 343-352, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31241045

RESUMO

Non-alcoholic fatty liver disease and its complications are frequent causes of liver-related morbidity and mortality. Incretin glucagon-like peptide-1 (GLP-1) affects liver functions and metabolism. Although GLP-1 analogues are widely used in clinical practice, information regarding their potential toxic effect on hepatocytes in vitro is missing. Therefore, we evaluated the effect of GLP-1 analogue liraglutide on activity of caspases 3/7, cell viability and oxidative stress in primary cultures of hepatocytes. Primary cultures isolated from male Wistar rats fed a standard (ST1-group, 10% energy from fat) or a high-fat diet (HF-group, 71% fat) for 10 weeks were incubated with liraglutide (0.1-1000 nmol/l) for 24 h. Activities of caspases 3/7 and cellular dehydrogenases (WST-1), lactate dehydrogenase (LDH) leakage and oxidative stress (malondialdehyde concentration and DCFDA assay) were evaluated. HF-groups vs. ST1-groups showed higher caspases activity, LDH leakage and MDA production (p < 0.001) and lower cellular dehydrogenases activity (p < 0.01). Liraglutide induced a dose-dependent decrease of caspases activity in both groups, reduction of oxidative stress in HF-animals and exerted no negative effects on other parameters. In conclusion, GLP-1 analogue liraglutide decreased activity of caspases 3/7, reduced ROS production and didn't exhibit negative effects on cell viability and oxidative stress in primary cultures of hepatocytes isolated from lean and steatotic livers.


Assuntos
Separação Celular , Fígado Gorduroso/patologia , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Liraglutida/farmacologia , Fígado/citologia , Animais , Células Cultivadas , Masculino , Ratos , Ratos Wistar
16.
Toxicol Lett ; 313: 1-10, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31170421

RESUMO

The constitutive androstane receptor(CAR) activation is connected with mitogenic effects leading to liver hyperplasia and tumorigenesis in rodents. CAR activators, including phenobarbital, are considered rodent non-genotoxic carcinogens. Recently, trans-3,4,5,4´-tetramethoxystilbene(TMS), a potential anticancer drug (DMU-212), have been shown to alleviate N-nitrosodiethylamine/phenobarbital-induced liver carcinogenesis. We studied whether TMS inhibits mouse Car to protect from the PB-induced tumorigenesis. Unexpectedly, we identified TMS as a murine CAR agonist in reporter gene experiments, in mouse hepatocytes, and in C57BL/6 mice in vivo. TMS up-regulated Car target genes Cyp2b10, Cyp2c29 and Cyp2c55 mRNAs, but down-regulated expression of genes involved in gluconeogenesis and lipogenesis. TMS did not change or down-regulate genes involved in liver proliferation or apoptosis such as Mki67, Foxm1, Myc, Mcl1, Pcna, Bcl2, or Mdm2, which were up-regulated by another Car ligand TCPOBOP. TMS did not increase liver weight and had no significant effect on Ki67 and Pcna labeling indices in mouse liver in vivo. In murine hepatic AML12 cells, we confirmed a Car-independent proapoptotic effect of TMS. We conclude that TMS is a Car ligand with limited effects on hepatocyte proliferation, likely due to promoting apoptosis in mouse hepatic cells, while controlling Car target genes involved in xenobiotic and endobiotic metabolism.


Assuntos
Anticarcinógenos/farmacologia , Proliferação de Células/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Neoplasias Hepáticas/prevenção & controle , Fígado/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/agonistas , Estilbenos/farmacologia , Animais , Anticarcinógenos/metabolismo , Apoptose/efeitos dos fármacos , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Sítios de Ligação , Receptor Constitutivo de Androstano , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Células Hep G2 , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Lipogênese/efeitos dos fármacos , Lipogênese/genética , Fígado/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Ligação Proteica , Piridinas/farmacologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Transdução de Sinais/efeitos dos fármacos , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Estilbenos/metabolismo
17.
Drug Chem Toxicol ; 40(4): 448-456, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27960556

RESUMO

CONTEXT: Acetaminophen (APAP) hepatotoxicity is often studied in primary cultures of hepatocytes of various species, but there are only few works comparing interspecies differences in susceptibility of hepatocytes to APAP in vitro. OBJECTIVES: The aim of our work was to compare hepatotoxicity of APAP in rat and mouse hepatocytes in primary cultures. MATERIALS AND METHODS: Hepatocytes isolated from male Wistar rats and C57Bl/6J mice were exposed to APAP for up to 24 h. We determined lactate dehydrogenase (LDH) activity in culture medium, activity of cellular dehydrogenases (WST-1) and activity of caspases 3 in cell lysate as markers of cell damage/death. We assessed content of intracellular reduced glutathione, production of reactive oxygen species (ROS) and malondialdehyde (MDA). Respiration of digitonin-permeabilized hepatocytes was measured by high resolution respirometry and mitochondrial membrane potential (MMP) was visualized (JC-1). RESULTS: APAP from concentrations of 2.5 and 0.75 mmol/L induced a decrease in viability of rat (p < 0.001) and mouse (p < 0.001) hepatocytes (WST-1), respectively. In contrast to rat hepatocytes, there was no activation of caspase-3 in mouse hepatocytes after APAP treatment. Earlier damage to plasma membrane and faster depletion of reduced glutathione were detected in mouse hepatocytes. Mouse hepatocytes showed increased glutamate + malate-driven respiration in state 4 and higher susceptibility of the outer mitochondrial membrane (OMM) to APAP-induced injury. CONCLUSION: APAP displayed dose-dependent toxicity in hepatocytes of both species. Mouse hepatocytes in primary culture however had approximately three-fold higher susceptibility to the toxic effect of APAP when compared to rat hepatocytes.


Assuntos
Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Membrana Celular/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Glutationa/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Mitocôndrias Hepáticas/enzimologia , Mitocôndrias Hepáticas/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Oxirredução , Ratos Wistar , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie
18.
J Bioenerg Biomembr ; 48(4): 363-73, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27530389

RESUMO

A compound with promising anticancer properties, 3-bromopyruvate (3-BP) is a synthetic derivative of a pyruvate molecule; however, its toxicity in non-malignant cells has not yet been fully elucidated. Therefore, we elected to study the effects of 3-BP on primary hepatocytes in monolayer cultures, permeabilized hepatocytes and isolated mitochondria. After a 1-h treatment with 100 µM 3-BP cell viability of rat hepatocytes was decreased by 30 % as measured by the WST-1 test (p < 0.001); after 3-h exposure to ≥200 µM 3-BP lactate dehydrogenase leakage was increased (p < 0.001). Reactive oxygen species production was increased in the cell cultures after a 1-h treatment at concentrations ≥100 µmol/l (p < 0.01), and caspase 3 activity was increased after a 20-h incubation with 150 µM and 200 µM 3-BP (p < 0.001). This toxic effect of 3-BP was also proved using primary mouse hepatocytes. In isolated mitochondria, 3-BP induced a dose- and time-dependent decrease of mitochondrial membrane potential during a 10-min incubation both with Complex I substrates glutamate + malate or Complex II substrate succinate, although this decrease was more pronounced with the latter. We also measured the effect of 3-BP on respiration of isolated mitochondria. ADP-activated respiration was inhibited by 20 µM 3-BP within 10 min. Similar effects were also found in permeabilized hepatocytes of both species.


Assuntos
Hepatócitos/efeitos dos fármacos , Doenças Mitocondriais/induzido quimicamente , Piruvatos/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Hepatócitos/citologia , Hepatócitos/ultraestrutura , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias Hepáticas/efeitos dos fármacos , Doenças Mitocondriais/fisiopatologia , Piruvatos/farmacologia , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
19.
Acta Medica (Hradec Kralove) ; 59(2): 35-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27526303

RESUMO

AIM: The aim of our study was to assess whether simple steatosis impairs liver regeneration after partial hepatectomy (PHx) in rats. METHODS: Male Sprague-Dawley rats were fed a standard diet (ST-1, 10% kcal fat) and high-fat diet (HFD, 71% kcal fat) for 6 weeks. Then the rats were submitted to 2/3 PHx and animals were sacrificed 24, 48 or 72 h after PHx. Serum biochemistry, respiration of mitochondria in liver homogenate, hepatic oxidative stress markers, selected cytokines and DNA content were measured, and histopathological samples were prepared. Liver regeneration was evaluated by incorporation of bromodeoxyuridine (BrdU) to hepatocyte DNA. RESULTS: HFD induced simple microvesicular liver steatosis. PHx caused elevation of serum markers of liver injury in both groups; however, an increase in these parameters was delayed in HFD group. Hepatic content of reduced glutathione was significantly increased in both groups after PHx. There were no significant changes in activities of respiratory complexes I and II (state 3). Relative and absolute liver weights, total DNA content, and DNA synthesis exerted very similar changes in both ST-1 and HFD groups after PHx. CONCLUSION: PHx-induced regeneration of the rat liver with simple steatosis was not significantly affected when compared to the lean liver.


Assuntos
Fígado Gorduroso/patologia , Fígado Gorduroso/fisiopatologia , Hepatectomia , Regeneração Hepática/fisiologia , Animais , Fígado/patologia , Fígado/fisiopatologia , Testes de Função Hepática , Masculino , Mitocôndrias Hepáticas/patologia , Mitocôndrias Hepáticas/fisiologia , Ratos , Ratos Sprague-Dawley
20.
Oxid Med Cell Longev ; 2016: 7573131, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28074116

RESUMO

Epigallocatechin gallate (EGCG) is a green tea antioxidant with adverse effects on rat liver mitochondria and hepatocytes at high doses. Here, we assessed whether low doses of EGCG would protect these systems from damage induced by tert-butyl hydroperoxide (tBHP). Rat liver mitochondria or permeabilized rat hepatocytes were pretreated with EGCG and then exposed to tBHP. Oxygen consumption, mitochondrial membrane potential (MMP), and mitochondrial retention capacity for calcium were measured. First, 50 µM EGCG or 0.25 mM tBHP alone increased State 4 Complex I-driven respiration, thus demonstrating uncoupling effects; tBHP also inhibited State 3 ADP-stimulated respiration. Then, the coexposure to 0.25 mM tBHP and 50 µM EGCG induced a trend of further decline in the respiratory control ratio beyond that observed upon tBHP exposure alone. EGCG had no effect on MMP and no effect, in concentrations up to 50 µM, on mitochondrial calcium retention capacity. tBHP led to a decline in both MMP and mitochondrial retention capacity for calcium; these effects were not changed by pretreatment with EGCG. In addition, EGCG dose-dependently enhanced hydrogen peroxide formation in a cell- and mitochondria-free medium. Conclusion. Moderate nontoxic doses of EGCG were not able to protect rat liver mitochondria and hepatocytes from tBHP-induced mitochondrial dysfunction.


Assuntos
Catequina/análogos & derivados , Hepatócitos/efeitos dos fármacos , Mitocôndrias Hepáticas/efeitos dos fármacos , terc-Butil Hidroperóxido/toxicidade , Animais , Cálcio/metabolismo , Catequina/farmacologia , Células Cultivadas , Hepatócitos/citologia , Hepatócitos/metabolismo , Peróxido de Hidrogênio/metabolismo , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...