Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833917

RESUMO

Soil's biological equilibrium, disturbed by the uncontrolled penetration of pesticides, can be restored by the activity of native microorganisms, which show abilities in neutralizing these xenobiotics. Therefore, this research is necessary in the search for new microorganisms used in the process of the bioremediation of contaminated soils. The aim of this study was to evaluate the effects of the herbicides, Sulcogan 300 SC, Tezosar 500 SC, and Sulcotrek 500 SC, applied to soil at the manufacturers' recommended dosage as well as 10-fold higher, on the abundance of microorganisms, the diversity and structure of bacterial and fungal communities, the activity of soil enzymes, and the growth and development of Zea mays L. It was found that herbicides in contaminating amounts stimulated the proliferation of organotrophic bacteria and inhibited the growth of fungi. Organotrophic bacteria and actinobacteria were represented by K-strategies and fungi by r-strategies. Bacteria belonging to the phylum, Actinobacteriota, represented by the genus, Cellulosimicrobium, were most abundant in the soil, while among the fungi, it was the phylum, Ascomycota, represented by the genus, Humicola and Chaetomium. The herbicides decreased urease activity while increasing arylsulfatase and acid phosphatase activity. They had a positive effect on the growth and development of Zea mays L., as evidenced by an increase in the values of the plant tolerance index (TI) and the maize leaf greenness index (SPAD). The results indicate that soil microorganisms and enzymes are suitable indicators reflecting the quality of herbicide-treated soil.


Assuntos
Ascomicetos , Herbicidas , Poluentes do Solo , Solo/química , Fungos , Bactérias , Herbicidas/farmacologia , Microbiologia do Solo , Zea mays
2.
Materials (Basel) ; 16(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834637

RESUMO

Negative public sentiment built up around bisphenol A (BPA) follows growing awareness of the frequency of this chemical compound in the environment. The increase in air, water, and soil contamination by BPA has also generated the need to replace it with less toxic analogs, such as Bisphenol F (BPF) and Bisphenol S (BPS). However, due to the structural similarity of BPF and BPS to BPA, questions arise about the safety of their usage. The toxicity of BPA, BPF, and BPS towards humans and animals has been fairly well understood. The biodegradability potential of microorganisms towards each of these bisphenols is also widely recognized. However, the scale of their inhibitory pressure on soil microbiomes and soil enzyme activity has not been estimated. These parameters are extremely important in determining soil health, which in turn also influences plant growth and development. Therefore, in this manuscript, knowledge has been expanded and systematized regarding the differences in toxicity between BPA and its two analogs. In the context of the synthetic characterization of the effects of bisphenol permeation into the environment, the toxic impact of BPA, BPF, and BPS on the microbiological and biochemical parameters of soils was traced. The response of cultivated plants to their influence was also analyzed.

3.
Molecules ; 28(12)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37375248

RESUMO

Chromium (Cr) can exist in several oxidation states, but the two most stable forms-Cr(III) and Cr(VI)-have completely different biochemical characteristics. The aim of the present study was to evaluate how soil contamination with Cr(III) and Cr(VI) in the presence of Na2EDTA affects Avena sativa L. biomass; assess the remediation capacity of Avena sativa L. based on its tolerance index, translocation factor, and chromium accumulation; and investigate how these chromium species affect the soil enzyme activity and physicochemical properties of soil. This study consisted of a pot experiment divided into two groups: non-amended and amended with Na2EDTA. The Cr(III)- and Cr(VI)-contaminated soil samples were prepared in doses of 0, 5, 10, 20, and 40 mg Cr kg-1 d.m. soil. The negative effect of chromium manifested as a decreased biomass of Avena sativa L. (aboveground parts and roots). Cr(VI) proved to be more toxic than Cr(III). The tolerance indices (TI) showed that Avena sativa L. tolerates Cr(III) contamination better than Cr(VI) contamination. The translocation values for Cr(III) were much lower than for Cr(VI). Avena sativa L. proved to be of little use for the phytoextraction of chromium from soil. Dehydrogenases were the enzymes which were the most sensitive to soil contamination with Cr(III) and Cr(VI). Conversely, the catalase level was observed to be the least sensitive. Na2EDTA exacerbated the negative effects of Cr(III) and Cr(VI) on the growth and development of Avena sativa L. and soil enzyme activity.


Assuntos
Avena , Poluentes do Solo , Solo/química , Ácido Edético , Poluentes do Solo/análise , Cromo/química
4.
Molecules ; 28(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37375310

RESUMO

Owing to their wide range of applications in the control of ticks and insects in horticulture, forestry, agriculture and food production, pyrethroids pose a significant threat to the environment, including a risk to human health. Hence, it is extremely important to gain a sound understanding of the response of plants and changes in the soil microbiome induced by permethrin. The purpose of this study has been to show the diversity of microorganisms, activity of soil enzymes and growth of Zea mays following the application of permethrin. This article presents the results of the identification of microorganisms with the NGS sequencing method, and of isolated colonies of microorganisms on selective microbiological substrates. Furthermore, the activity of several soil enzymes, such as dehydrogenases (Deh), urease (Ure), catalase (Cat), acid phosphatase (Pac), alkaline phosphatase (Pal), ß-glucosidase (Glu) and arylsulfatase (Aryl), as well as the growth of Zea mays and its greenness indicators (SPAD), after 60 days of growth following the application of permethrin, were presented. The research results indicate that permethrin does not have a negative effect on the growth of plants. The metagenomic studies showed that the application of permethrin increases the abundance of Proteobacteria, but decreases the counts of Actinobacteria and Ascomycota. The application of permethrin raised to the highest degree the abundance of bacteria of the genera Cellulomonas, Kaistobacter, Pseudomonas, Rhodanobacter and fungi of the genera Penicillium, Humicola, Iodophanus, Meyerozyma. It has been determined that permethrin stimulates the multiplication of organotrophic bacteria and actinomycetes, decreases the counts of fungi and depresses the activity of all soil enzymes in unseeded soil. Zea mays is able to mitigate the effect of permethrin and can therefore be used as an effective phytoremediation plant.


Assuntos
Ascomicetos , Poluentes do Solo , Humanos , Solo/química , Permetrina/farmacologia , Bactérias/genética , Fosfatase Alcalina , Microbiologia do Solo , Poluentes do Solo/análise
5.
Materials (Basel) ; 16(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241368

RESUMO

Due to their ability to adsorb or absorb chemical pollutants, including organic compounds, sorbents are increasingly used in the reclamation of soils subjected to their pressure, which results from their high potential in eliminating xenobiotics. The precise optimization of the reclamation process is required, focused primarily on restoring the condition of the soil. This research are essential for seeking materials sufficiently potent to accelerate the remediation process and for expanding knowledge related to biochemical transformations that lead to the neutralization of these pollutants. The goal of this study was to determine and compare the sensitivity of soil enzymes to petroleum-derived products in soil sown with Zea mays, remediated using four sorbents. The study was conducted in a pot experiment, with loamy sand (LS) and sandy loam (SL) polluted with VERVA diesel oil (DO) and VERVA 98 petrol (P). Soil samples were collected from arable lands, and the effects of the tested pollutants were compared with those used as control uncontaminated soil samples in terms of Zea mays biomass and the activity of seven enzymes in the soil. The following sorbents were applied to mitigate DO and P effects on the test plants and enzymatic activity: molecular sieve (M), expanded clay (E), sepiolite (S), and Ikasorb (I). Both DO and P exerted a toxic effect on Zea mays, with DO more strongly disturbing its growth and development and the activities of soil enzymes than P. In sandy clay (SL), P was found to be a significant inhibitor of dehydrogenases (Deh), catalase (Cat), urease (Ure), alkaline phosphatase (Pal), and arylsulfatase (Aryl) activities, while DO stimulated the activity of all enzymes in this soil. The study results suggest that the sorbents tested, mainlya molecular sieve, may be useful in remediating DO-polluted soils, especially when alleviating the effects of these pollutants in soils of lower agronomic value.

6.
Int J Mol Sci ; 24(3)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36769219

RESUMO

Pyrethroids are insecticides most commonly used for insect control to boost agricultural production. The aim of the present research was to determine the effect of permethrin and cypermethrin on cultured and non-cultivated bacteria and fungi and on the activity of soil enzymes, as well as to determine the usefulness of Zea mays in mitigating the adverse effects of the tested pyrethroids on the soil microbiome. The analyses were carried out in the samples of both soil not sown with any plant and soil sown with Zea mays. Permethrin and cypermethrin were found to stimulate the multiplication of cultured organotrophic bacteria (on average by 38.3%) and actinomycetes (on average by 80.2%), and to inhibit fungi growth (on average by 31.7%) and the enzymatic activity of the soil, reducing the soil biochemical fertility index (BA) by 27.7%. They also modified the number of operational taxonomic units (OTUs) of the Actinobacteria and Proteobacteria phyla and the Ascomycota and Basidiomycota phyla. The pressure of permethrin and cypermethrin was tolerated well by the bacteria Sphingomonas (clone 3214512, 1052559, 237613, 1048605) and Bacillus (clone New.ReferenceOTU111, 593219, 578257), and by the fungi Penicillium (SH1533734.08FU, SH1692798.08FU) and Trichocladium (SH1615601.08FU). Both insecticides disturbed the growth and yielding of Zea mays, as a result of which its yield and leaf greenness index decreased. The cultivation of Zea mays had a positive effect on both soil enzymes and soil microorganisms and mitigated the anomalies caused by the tested insecticides in the microbiome and activity of soil enzymes. Permethrin decreased the yield of its aerial parts by 37.9% and its roots by 33.9%, whereas respective decreases caused by cypermethrin reached 16.8% and 4.3%.


Assuntos
Inseticidas , Microbiota , Piretrinas , Permetrina/farmacologia , Inseticidas/farmacologia , Solo/química , Piretrinas/farmacologia , Plantas , Bactérias , Fungos , Microbiologia do Solo , Rizosfera
7.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364328

RESUMO

Identification of pesticide impact on the soil microbiome is of the utmost significance today. Diagnosing the response of bacteria to tebuconazole, used for plant protection, may help isolate the most active bacteria applicable in the bioaugmentation of soils contaminated with this preparation. Bearing in mind the above, a study was undertaken to test the effect of tebuconazole on the diversity of bacteria at all taxonomic levels and on the activity of soil enzymes. It was conducted by means of standard and metagenomic methods. Its results showed that tebuconazole applied in doses falling within the ranges of good agricultural practice did not significantly disturb the biological homeostasis of soil and did not diminish its fertility. Tebuconazole was found to stimulate the proliferation of organotrophic bacteria and fungi, and also the activities of soil enzymes responsible for phosphorus, sulfur, and carbon metabolism. It did not impair the activity of urease responsible for urea hydrolysis, or cause any significant changes in the structure of bacterial communities. All analyzed soil samples were mainly populated by bacteria from the phylum Proteobacteria, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, Planctomycetes, and Chloroflexi. Bacteria from the genera Kaistobacter, Arthrobacter, and Streptomyces predominated in the soils contaminated with tebuconazole, whereas these from the Gemmata genus were inactivated by this preparation.


Assuntos
Microbiota , Solo , Solo/química , Microbiologia do Solo , Triazóis/farmacologia , Bactérias , RNA Ribossômico 16S
8.
Materials (Basel) ; 15(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36013875

RESUMO

An undesirable side effect of economic progress is increasingly severe pollution with heavy metals, responsible for the degradation of ecosystems, including soil resources. Hence, this research focused on examining six adsorbents in order to distinguish a reactive mineral with the highest capacity to remediate soils contaminated with heavy metals. To this end, the soil was polluted with Co2+ and Cd2+ by applying the metals in concentrations of 100 mg kg-1 d.m. The extent of soil equilibrium disturbances was assessed by evaluating the response of the soil microbiome, activity of seven soil enzymes, and the yields of Helianthus annuus L. Six sorbents were evaluated: a molecular sieve, expanded clay (ExClay), halloysite, zeolite, sepiolite and biochar. Co2+ and Cd2+ proved to be significant inhibitors of the soil's microbiological and biochemical parameters. Organotrophic bacteria among the analysed groups of microorganisms and dehydrogenases among the soil enzymes were most sensitive to the effects of the metals. Both metals significantly distorted the growth and development of sunflower, with Co2+ having a stronger adverse impact on the synthesis of chlorophyll. The molecular sieve and biochar were the sorbents that stimulated the multiplication of microorganisms and enzymatic activity in the contaminated soil. The activity of enzymes was also stimulated significantly by zeolite and sepiolite, while the growth of Helianthus annuus L. biomass was stimulated by the molecular sieve, which can all be considered the most useful reactive materials in the remediation of soils exposed to Co2+ and Cd2+.

9.
Materials (Basel) ; 15(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35955133

RESUMO

Despite numerous studies on the influence of heavy metals on soil health, the search for effective, eco-friendly, and economically viable remediation substances is far from over. This encouraged us to carry out a study under strictly controlled conditions to test the effects of Cu2+, Ni2+, and Zn2+ added to soil in amounts of 150 mg·kg-1 d.m. of soil on the soil microbiome, on the activity of two oxidoreductases and five hydrolases, and on the growth and development of the sunflower Helianthus annunus L. The remediation substances were a molecular sieve, halloysite, sepiolite, expanded clay, zeolite, and biochar. It has been demonstrated that the most severe turbulences in the soil microbiome, its activity, and the growth of Helianthus annunus L. were caused by Ni2+, followed by Cu2+, and the mildest negative effect was produced by Zn2+. The adverse impact of heavy metals on the soil microbiome and its activity was alleviated by the applied sorbents. Their application also contributed to the increased biomass of plants, which is significant for the successful phytoextraction of these metals from soil. Irrespective of which property was analysed, sepiolite can be recommended for the remediation of soil polluted with Ni2+ and zeolite-for soil polluted with Cu2+ and Zn2+. Both sorbents mitigated to the highest degree disturbances caused by the tested metals in the soil environment.

10.
Int J Mol Sci ; 23(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35682625

RESUMO

The research objective was established by taking into account common sources of soil contamination with bisphenol A (B) and zinc (Zn2+), as well as the scarcity of data on the effect of metabolic pathways involved in the degradation of organic compounds on the complexation of zinc in soil. Therefore, the aim of this study was to determine the spectrum of soil homeostasis disorders arising under the pressure of both the separate and combined toxicity of bisphenol A and Zn2+. With a broad pool of indicators, such as indices of the effect of xenobiotics (IFX), humic acid (IFH), plants (IFP), colony development (CD), ecophysiological diversity (EP), the Shannon-Weaver and the Simpson indices, as well as the index of soil biological fertility (BA21), the extent of disturbances was verified on the basis of enzymatic activity, microbiological activity, and structural diversity of the soil microbiome. A holistic character of the study was achieved, having determined the indicators of tolerance (IT) of Sorghum Moench (S) and Panicum virgatum (P), the ratio of the mass of their aerial parts to roots (PR), and the SPAD leaf greenness index. Bisphenol A not only failed to perform a complexing role towards Zn2+, but in combination with this heavy metal, had a particularly negative effect on the soil microbiome and enzymatic activity. The NGS analysis distinguished certain unique genera of bacteria in all objects, representing the phyla Actinobacteriota and Proteobacteria, as well as fungi classified as members of the phyla Ascomycota and Basidiomycota. Sorghum Moench (S) proved to be more sensitive to the xenobiotics than Panicum virgatum (P).


Assuntos
Microbiota , Poluentes do Solo , Bactérias , Compostos Benzidrílicos , Fenóis , Solo/química , Microbiologia do Solo , Poluentes do Solo/química , Poluentes do Solo/toxicidade , Xenobióticos/toxicidade , Zinco/toxicidade
11.
Artigo em Inglês | MEDLINE | ID: mdl-35742602

RESUMO

Given their common use for disease treatment in humans, and particularly in animals, antibiotics pose an exceptionally serious threat to the soil environment. This study aimed to determine the response of soil bacteria and oxidoreductases to a tetracycline (Tc) contamination, and to establish the usability of grass compost (G) and Zea mays (Zm) in mitigating adverse Tc effects on selected microbial properties of the soil. The scope of microbiological analyses included determinations of bacteria with the conventional culture method and new-generation sequencing method (NGS). Activities of soil dehydrogenases and catalase were determined as well. Tc was found to reduce counts of organotrophic bacteria and actinobacteria in the soils as well as the activity of soil oxidoreductases. Soil fertilization with grass compost (G) and Zea mays (Zm) cultivation was found to alleviate the adverse effects of tetracycline on the mentioned group of bacteria and activity of oxidoreductases. The metagenomic analysis demonstrated that the bacteria belonging to Acidiobacteria and Proteobacteria phyla were found to prevail in the soil samples. The study results recommend soil fertilization with G and Zm cultivation as successful measures in the bioremediation of tetracycline-contaminated soils and indicate the usability of the so-called core bacteria in the bioaugmentation of such soils.


Assuntos
Compostagem , Poluentes do Solo , Animais , Antibacterianos/toxicidade , Bactérias/genética , Oxirredutases , Poaceae , Solo , Microbiologia do Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Tetraciclina/toxicidade , Zea mays
12.
Materials (Basel) ; 15(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35591626

RESUMO

To decompose forest biomass, microorganisms use specific enzymes from the class of oxidoreductases and hydrolases, which are produced by bacteria and soil fungi. In post-agricultural forest soils, bacteria adapt more easily to changing ecological conditions than fungi. The unique features of bacteria, i.e., tolerance and the ability to degrade a wide range of chemical compounds, prompted us to conduct research that contributes to the improvement of the broadly understood circular management of biomass production and economic efficiency. This study aimed to analyze changes in the microbiological activity and the activities of dehydrogenases, catalase, ß-glucosidase, urease, arylsulfatase, acid phosphatase, and alkaline phosphatase in the soil sampled from under Picea abies (Pa), Pinus sylvestris (Ps), Larix decidua (Ld), Quercus robur (Qr), and Betula pendula (Bp), after 19 years. The control object was unforested soil. The studies allowed one to demonstrate the relationship between the activity of soil enzymes and the assemblages of culturable microorganisms and bacteria determined by the metagenomic method and tree species. Thus, it is possible to design the selection of tree species catalyzing enzymatic processes in soil. The strongest growth promoter of microorganisms turned out to be Quercus robur L., followed by Picea abies L., whereas the weakest promoters appeared to be Pinus sylvestris L. and Larix decidua M.

13.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613625

RESUMO

Chromium is used in many settings, and hence, it can easily enter the natural environment. It exists in several oxidation states. In soil, depending on its oxidation-reduction potential, it can occur in bivalent, trivalent or hexavalent forms. Hexavalent chromium compounds are cancerogenic to humans. The aim of this study was to determine the effect of Cr(VI) on the structure of bacteria and fungi in soil, to find out how this effect is modified by humic acids and to determine the response of Zea mays to this form of chromium. A pot experiment was conducted to answer the above questions. Zea mays was sown in natural soil and soil polluted with Cr(VI) in an amount of 60 mg kg-1 d.m. Both soils were treated with humic acids in the form of HumiAgra preparation. The ecophysiological and genetic diversity of bacteria and fungi was assayed in soil under maize (not sown with Zea mays). In addition, the following were determined: yield of maize, greenness index, index of tolerance to chromium, translocation index and accumulation of chromium in the plant. It has been determined that Cr(VI) significantly distorts the growth and development of Zea mays, while humic acids completely neutralize its toxic effect on the plant. This element had an adverse effect on the development of bacteria of the genera Cellulosimicrobium, Kaistobacter, Rhodanobacter, Rhodoplanes and Nocardioides and fungi of the genera Chaetomium and Humicola. Soil contamination with Cr(VI) significantly diminished the genetic diversity and richness of bacteria and the ecophysiological diversity of fungi. The negative impact of Cr(VI) on the diversity of bacteria and fungi was mollified by Zea mays and the application of humic acids.


Assuntos
Poluentes do Solo , Solo , Humanos , Solo/química , Zea mays , Substâncias Húmicas , Cromo/toxicidade , Cromo/análise , Plantas , Bactérias , Poluentes do Solo/toxicidade
14.
Int J Mol Sci ; 22(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34884560

RESUMO

Bisphenol A (BPA), with its wide array of products and applications, is currently one of the most commonly produced chemicals in the world. A narrow pool of data on BPA-microorganism-plant interaction mechanisms has stimulated the following research, the aim of which has been to determine the response of the soil microbiome and crop plants, as well as the activity of soil enzymes exposed to BPA pressure. A range of disturbances was assessed, based on the activity of seven soil enzymes, an abundance of five groups of microorganisms, and the structural diversity of the soil microbiome. The condition of the soil was verified by determining the values of the indices: colony development (CD), ecophysiological diversity (EP), the Shannon-Weaver index, and the Simpson index, tolerance of soil enzymes, microorganisms and plants (TIBPA), biochemical soil fertility (BA21), the ratio of the mass of aerial parts to the mass of plant roots (PR), and the leaf greenness index: Soil and Plant Analysis Development (SPAD). The data brought into sharp focus the adverse effects of BPA on the abundance and ecophysiological diversity of fungi. A change in the structural composition of bacteria was noted. Bisphenol A had a more beneficial effect on the Proteobacteria than on bacteria from the phyla Actinobacteria or Bacteroidetes. The microbiome of the soil exposed to BPA was numerously represented by bacteria from the genus Sphingomonas. In this object pool, the highest fungal OTU richness was achieved by the genus Penicillium, a representative of the phylum Ascomycota. A dose of 1000 mg BPA kg-1 d.m. of soil depressed the activity of dehydrogenases, urease, acid phosphatase and ß-glucosidase, while increasing that of alkaline phosphatase and arylsulfatase. Spring oilseed rape and maize responded significantly negatively to the soil contamination with BPA.


Assuntos
Bactérias/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Brassica napus/efeitos dos fármacos , Enzimas/metabolismo , Fenóis/toxicidade , Microbiologia do Solo , Solo/química , Zea mays/efeitos dos fármacos , Poluentes Ocupacionais do Ar/toxicidade , Fungos/efeitos dos fármacos
15.
Materials (Basel) ; 14(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34772211

RESUMO

Soil contamination with cresol is a problem of the 21st century and poses a threat to soil microorganisms, humans, animals, and plants. The lack of precise data on the potential toxicity of o-cresol in soil microbiome and biochemical activity, as well as the search for effective remediation methods, inspired the aim of this study. Soil is subjected to four levels of contamination with o-cresol: 0, 0.1, 1, 10, and 50 mg o-cresol kg-1 dry matter (DM) of soil and the following are determined: the count of eight groups of microorganisms, colony development index (CD) and ecophysiological diversity index (EP) for organotrophic bacteria, actinobacteria and fungi, and the bacterial genetic diversity. Moreover, the responses of seven soil enzymes are investigated. Perna canaliculus is a recognized biosorbent of organic pollutants. Therefore, microbial biostimulation with Perna canaliculus shells is used to eliminate the negative effect of the phenolic compound on the soil microbiome. Fungi appears to be the microorganisms most sensitive to o-cresol, while Pseudomonas sp. is the least sensitive. In o-cresol-contaminated soils, the microbiome is represented mainly by the bacteria of the Proteobacteria and Firmicutes phyla. Acid phosphatase, alkaline phosphatase and urease can be regarded as sensitive indicators of soil disturbance. Perna canaliculus shells prove to be an effective biostimulator of soil under pressure with o-cresol.

16.
Molecules ; 26(9)2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34062889

RESUMO

The pollution of arable lands and water with petroleum-derived products is still a valid problem, mainly due the extensive works aimed to improve their production technology to reduce fuel consumption and protect engines. An example of the upgraded fuels is the BP 98 unleaded petrol with Active technology. A pot experiment was carried out in which Eutric Cambisol soil was polluted with petrol to determine its effect on the microbiological and biochemical properties of this soil. Analyses were carried out to determine soil microbiome composition-with the incubation and metagenomic methods, the activity of seven enzymes, and cocksfoot effect on hydrocarbon degradation. The following indices were determined: colony development index (CD); ecophysiological diversity index (EP); index of cocksfoot effect on soil microorganisms and enzymes (IFG); index of petrol effect on soil microorganisms and enzymes (IFP); index of the resistance of microorganisms, enzymes, and cocksfoot to soil pollution with petrol (RS); Shannon-Weaver's index of bacterial taxa diversity (H); and Shannon-Weaver's index of hydrocarbon degradation (IDH). The soil pollution with petrol was found to increase population numbers of bacteria and fungi, and Protebacteria phylum abundance as well as to decrease the abundance of Actinobacteria and Acidobacteria phyla. The cultivation of cocksfoot on the petrol-polluted soil had an especially beneficial effect mainly on the bacteria belonging to the Ramlibacter, Pseudoxanthomonas, Mycoplana, and Sphingobium genera. The least susceptible to the soil pollution with petrol and cocksfoot cultivation were the bacteria of the following genera: Kaistobacter, Rhodoplanes, Bacillus, Streptomyces, Paenibacillus, Phenylobacterium, and Terracoccus. Cocksfoot proved effective in the phytoremediation of petrol-polluted soil, as it accelerated hydrocarbon degradation and increased the genetic diversity of bacteria. It additionally enhanced the activities of soil enzymes.


Assuntos
Actinobacteria/metabolismo , Actinomycetales/metabolismo , Poluentes Ambientais/análise , Poluição por Petróleo , Microbiologia do Solo , Poluentes do Solo , Biodegradação Ambiental , Monitoramento Ambiental , Gasolina , Hidrocarbonetos , Metagenoma , Microbiota
17.
Int J Phytoremediation ; 23(3): 252-262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32854521

RESUMO

This pot experiment analyzed the use of Brassica napus, Elymus elongatus and Zea mays in the removal of Cd2+ Co2+ and Ni2+ from the soil. The utility of the plants under study for phytoremediation was analyzed based on the biomass of the aboveground parts and roots and the accumulation of metals, bioaccumulation, bioconcentration and translocation capability in the above-ground parts and roots. The effect of heavy metals on the soil enzyme activity and soil physicochemical properties was also determined. Among the species under study, only E. elongatus was found to be suitable for Cd2+ phytoextraction, whereas E. elongatus and Z. mays proved to be suitable for phytostabilisation of Cd2+ and Co2+ because the criterion of the accumulation of metals in the roots at a sufficient level was fulfilled. The index of bioaccumulation in roots was greater than one. Both plant species met the second condition which determined the utility for phytostabilisation, as since the transport of Cd2+ Co2+ and Ni2+ from the roots to the above-ground parts was limited.


Assuntos
Cádmio , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Cobalto , Níquel , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
18.
Sensors (Basel) ; 20(12)2020 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-32545819

RESUMO

The global demand for petroleum contributes to a significant increase in soil pollution with petroleum-based products that pose a severe risk not only to humans but also to plants and the soil microbiome. The increasing pollution of the natural environment urges the search for effective remediation methods. Considering the above, the objective of this study was to determine the usability of Dactylis glomerata for the degradation of hydrocarbons contained in diesel oil (DO), as well as the effects of both the plant tested and DO on the biochemical functionality and changes in the soil microbiome. The experiment was conducted in a greenhouse with non-polluted soil as well as soil polluted with DO and phytoremediated with Dactylis glomerata. Soil pollution with DO increased the numbers of microorganisms and soil enzymes and decreased the value of the ecophysiological diversity index of microorganisms. Besides, it contributed to changes in the bacterial structure at all taxonomic levels. DO was found to increase the abundance of Proteobacteria and to decrease that of Actinobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes and Firmicutes. In the non-polluted soil, the core microbiome was represented by Kaistobacter and Rhodoplanes, whereas in the DO-polluted soil, it was represented by Parvibaculum and Rhodococcus. In soil sown with Dactylis glomerata, gasoline fraction (C6-C12) degradation was higher by 17%; mineral oil (C12-C35), by 9%; benzene, by 31%; anthracene, by 12%; chrysene, by 38%; benzo(a)anthracene, by 19%; benzo(a)pyrene, by 17%; benzo(b)fluoranthene, by 15%; and benzo(k)fluoranthene, by 18% than in non-sowed soil. To conclude, Dactylis glomerata proved useful in degrading DO hydrocarbons and, therefore, may be recommended for the phytoremediation of soils polluted with petroleum-based products. It has been shown that the microbiological, biochemical and chemical tests are fast and sensitive in the diagnosis of soil contamination with petroleum products, and a combination of all these tests gives a reliable assessment of the state of soils.


Assuntos
Dactylis , Gasolina , Microbiota , Microbiologia do Solo , Poluentes do Solo , Bactérias/classificação , Bactérias/metabolismo , Biodegradação Ambiental , Hidrocarbonetos , Poluição por Petróleo , Poluentes do Solo/análise
19.
Chemosphere ; 242: 125163, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31677518

RESUMO

The use of fungicides bears the risk of many undesirable outcomes that are manifested in, among other things, changes in the structure and activity of microorganisms. This study aimed at determining the effect of a Helicur 250 EW preparation, used to protect crops against fungal diseases, on the microbiological and biochemical activity of soil and on the development of Horderum vulgare L. The fungicide was sprayed on leaves of spring barley in the following doses (per active substance, i.e. tebuconazole, TEB): 0.046, 0.093, 0.139, 1.395, and 2.790 mg TEB plant-1. The following indices were analyzed in the study: index of microorganisms resistance (RS) to the effects of fungicide, microorganisms colony development index (CD), microorganisms ecophysiological diversity index (EP), genetic diversity of bacteria, enzymatic activity, and effect of the fungicide on spring barley development (IFH). The most susceptible to the effects of the fungicide turned out to be fungi. The metagenomic analysis demonstrated that the bacterial community differed in terms of structure and percentage contribution in the soil exposed to the fungicide from the control soil even at the Phylum level. However, Proteobacteria appeared to be the prevailing taxon in both soils. Bacillus arabhattai, B. soli, and B. simplex occurred exclusively in the control soil, whereas Ramlibacter tataounensis, Azospirillum palatum, and Kaistobacter terrae - exclusively in the soil contaminated with the fungicide. Helicur 250 EW suppressed activities of all soil enzymes except for arylsulfatase. In addition, it proved to be a strong inhibitor of spring barley growth and development.


Assuntos
Fungicidas Industriais/toxicidade , Hordeum/crescimento & desenvolvimento , Microbiota/efeitos dos fármacos , Microbiologia do Solo/normas , Poluentes do Solo/toxicidade , Triazóis/toxicidade , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Fungos/efeitos dos fármacos , Fungos/enzimologia , Fungicidas Industriais/análise , Metagenoma/efeitos dos fármacos , Microbiota/genética , Folhas de Planta/crescimento & desenvolvimento , Solo/química , Poluentes do Solo/análise , Triazóis/análise
20.
Environ Monit Assess ; 192(1): 20, 2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31820108

RESUMO

The concept of the study resulted from the lack of accurate data on the toxicity of bisphenol F (BPF) coinciding with the need for immediate changes in the global economic policy eliminating the effects of environmental contamination with bisphenol A (BPA). The aim of the experiment was to determine the scale of the previously unstudied inhibitory effect of BPF on soil biochemical activity. To this end, in a soil subjected to increasing BPF pressure at three contamination levels of 0, 5, 50 and 500 mg BPF kg-1 DM, responses of soil enzymes, dehydrogenases, catalase, urease, acid phosphatase, alkaline phosphatase, arylsulphatase and ß-glucosidase, were examined. Moreover, the study suggested a potentially effective way of biostimulating the soil by means of bioaugmentation with a consortium of four bacterial species: Pseudomonas umsongensis, Bacillus mycoides, Bacillus weihenstephanensis and Bacillus subtilis, and the following fungal species: Mucor circinelloides, Penicillium daleae, Penicillium chrysogenum and Aspergillus niger. It was found that BPF was a controversial BPA analogue due to the fact that it contributed to the inhibition of all the enzyme activities. Dehydrogenases proved to be the most sensitive to bisphenol contamination of the soil. The addition of 5 mg BPF kg-1 DM of soil triggered an escalation of the inhibition comparable to that for the other enzymes only after exposing them to the effects of 50 and 500 mg BPF kg-1 DM of soil. Moreover, BPF generated low activity of urease, acid phosphatase, alkaline phosphatase and ß-glucosidase. Bacterial inoculum increased the activity of urease, ß-glucosidase, catalase and alkaline phosphatase. Seventy-six percent of BPF underwent biodegradation during the 5 days of the study.


Assuntos
Compostos Benzidrílicos/análise , Biodegradação Ambiental , Monitoramento Ambiental , Fenóis/análise , Microbiologia do Solo , Poluentes do Solo/análise , Arilsulfatases , Bacillus/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Fungos/efeitos dos fármacos , Oxirredutases , Solo , Estrobilurinas , Urease
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...