Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Cogn Neurosci ; 67: 101369, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642426

RESUMO

The intraparietal sulcus (IPS) has been associated with numerical processing. A recent study reported that the IPS sulcal pattern was associated with arithmetic and symbolic number abilities in children and adults. In the present study, we evaluated the link between numerical abilities and the IPS sulcal pattern in children with Developmental Dyscalculia (DD) and typically developing children (TD), extending previous analyses considering other sulcal features and the postcentral sulcus (PoCS). First, we confirm the longitudinal sulcal pattern stability of the IPS and the PoCS. Second, we found a lower proportion of left sectioned IPS and a higher proportion of a double-horizontal IPS shape bilaterally in DD compared to TD. Third, our analyses revealed that arithmetic is the only aspect of numerical processing that is significantly related to the IPS sulcal pattern (sectioned vs not sectioned), and that this relationship is specific to the left hemisphere. And last, correlation analyses of age and arithmetic in children without a sectioned left IPS indicate that although they may have an inherent disadvantage in numerical abilities, these may improve with age. Thus, our results indicate that only the left IPS sulcal pattern is related to numerical abilities and that other factors co-determine numerical abilities.

2.
J Intell ; 10(3)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36135611

RESUMO

Intelligence, as well as working memory and attention, affect the acquisition of mathematical competencies. This paper aimed to examine the influence of working memory and attention when taking different mathematical skills into account as a function of children's intellectual ability. Overall, intelligence, working memory, attention and numerical skills were assessed twice in 1868 German pre-school children (t1, t2) and again at 2nd grade (t3). We defined three intellectual ability groups based on the results of intellectual assessment at t1 and t2. Group comparisons revealed significant differences between the three intellectual ability groups. Over time, children with low intellectual ability showed the lowest achievement in domain-general and numerical and mathematical skills compared to children of average intellectual ability. The highest achievement on the aforementioned variables was found for children of high intellectual ability. Additionally, path modelling revealed that, depending on the intellectual ability, different models of varying complexity could be generated. These models differed with regard to the relevance of the predictors (t2) and the future mathematical skills (t3). Causes and conclusions of these findings are discussed.

3.
Brain Sci ; 12(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35326269

RESUMO

BACKGROUND: Children's spontaneous focusing on numerosity (SFON) is related to numerical skills. This study aimed to examine (1) the developmental trajectory of SFON and (2) the interrelations between SFON and early numerical skills at pre-school as well as their influence on arithmetical skills at school. METHOD: Overall, 1868 German pre-school children were repeatedly assessed until second grade. Nonverbal intelligence, visual attention, visuospatial working memory, SFON and numerical skills were assessed at age five (M = 63 months, Time 1) and age six (M = 72 months, Time 2), and arithmetic was assessed at second grade (M = 95 months, Time 3). RESULTS: SFON increased significantly during pre-school. Path analyses revealed interrelations between SFON and several numerical skills, except number knowledge. Magnitude estimation and basic calculation skills (Time 1 and Time 2), and to a small degree number knowledge (Time 2), contributed directly to arithmetic in second grade. The connection between SFON and arithmetic was fully mediated by magnitude estimation and calculation skills at pre-school. CONCLUSION: Our results indicate that SFON first and foremost influences deeper understanding of numerical concepts at pre-school and-in contrast to previous findings -affects only indirectly children's arithmetical development at school.

4.
Ann N Y Acad Sci ; 1513(1): 10-20, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35322431

RESUMO

In this paper, we discuss several largely undisputed claims about mathematics anxiety (MA) and propose where MA research should focus, including theoretical clarifications on what MA is and what constitutes its opposite pole; discussion of construct validity, specifically relations between self-descriptive, neurophysiological, and cognitive measures; exploration of the discrepancy between state and trait MA and theoretical and practical consequences; discussion of the prevalence of MA and the need for establishing external criteria for estimating prevalence and a proposal for such criteria; exploration of the effects of MA in different groups, such as highly anxious and high math-performing individuals; classroom and policy applications of MA knowledge; the effects of MA outside educational settings; and the consequences of MA on mental health and well-being.


Assuntos
Transtornos de Ansiedade , Ansiedade , Ansiedade/psicologia , Transtornos de Ansiedade/epidemiologia , Humanos , Matemática
5.
J Neurosci Res ; 100(2): 522-536, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34933406

RESUMO

Developmental dyscalculia (DD) is a developmental learning disability associated with deficits in processing numerical and mathematical information. Several studies demonstrated functional network alterations in DD. Yet, there are no studies, which examined the structural network integrity in DD. We compared whole-brain maps of volume based structural covariance between 19 (4 males) children with DD and 18 (4 males) typically developing children. We found elevated structural covariance in the DD group between the anterior intraparietal sulcus to the middle temporal and frontal gyrus (p < 0.05, corrected). A hippocampus subfield analysis showed higher structural covariance in the DD group for area CA3 to the parahippocampal and calcarine sulcus, angular gyrus and anterior part of the intraparietal sulcus as well as to the lingual gyrus. Lower structural covariance in this group was seen for the subiculum to orbitofrontal gyrus, anterior insula and middle frontal gyrus. In contrast, the primary motor cortex (control region) revealed no difference in structural covariance between groups. Our results extend functional magnetic resonance studies by revealing abnormal gray matter integrity in children with DD. These findings thus indicate that the pathophysiology of DD is mediated by both structural and functional abnormalities in a network involved in number processing and memory function.


Assuntos
Discalculia , Deficiências da Aprendizagem , Encéfalo/patologia , Criança , Discalculia/diagnóstico por imagem , Discalculia/patologia , Humanos , Deficiências da Aprendizagem/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Matemática
6.
Front Psychol ; 11: 1115, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760306

RESUMO

This study presents the evaluation of a computer-based learning program for children with developmental dyscalculia and focuses on factors affecting individual responsiveness. The adaptive training program Calcularis 2.0 has been developed according to current neuro-cognitive theory of numerical cognition. It aims to automatize number representations, supports the formation and access to the mental number line and trains arithmetic operations as well as arithmetic fact knowledge in expanding number ranges. Sixty-seven children with developmental dyscalculia from second to fifth grade (mean age 8.96 years) were randomly assigned to one of two groups (Calcularis group, waiting control group). Training duration comprised a minimum of 42 training sessions à 20 min within a maximum period of 13 weeks. Compared to the waiting control group, children of the Calcularis group demonstrated a higher benefit in arithmetic operations and number line estimation. These improvements were shown to be stable after a 3-months post training interval. In addition, this study examines which predictors accounted for training improvements. Results indicate that this self-directed training was especially beneficial for children with low math anxiety scores and without an additional reading and/or spelling disorder. In conclusion, Calcularis 2.0 supports children with developmental dyscalculia to improve their arithmetical abilities and their mental number line representation. However, it is relevant to further adapt the setting to the individual circumstances.

7.
Front Hum Neurosci ; 14: 272, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765241

RESUMO

Developmental dyscalculia (DD) is a learning disability affecting the acquisition of numerical-arithmetical skills. Affected people show persistent deficits in number processing, which are associated with aberrant brain activation and structure. Reduced gray matter has been reported in DD for the parietal cortex including the intraparietal sulcus (IPS), but also the frontal and occipito-temporal cortex. Furthermore, dyscalculics show white matter differences for instance in the inferior (ILF) and superior longitudinal fasciculus (SLF). However, the longitudinal development of these structural differences is unknown. Therefore, our goal was to investigate the developmental trajectory of gray and white matter in children with and without DD. In this longitudinal study, neuropsychological measures and T1-weighted structural images were collected twice with an interval of 4 years from 13 children with DD (8.2-10.4 years) and 10 typically developing (TD) children (8.0-10.4 years). Voxel-wise estimation of gray and white matter volumes was assessed using voxel-based morphometry for longitudinal data. The present findings reveal for the first time that DD children show persistently reduced gray and white matter volumes over development. Reduced gray matter was found in the bilateral inferior parietal lobes including the IPS, supramarginal gyri, left precuneus, cuneus, right superior occipital gyrus, bilateral inferior and middle temporal gyri, and insula. White matter volumes were reduced in the bilateral ILF and SLF, inferior fronto-occipital fasciculus (IFOF), corticospinal tracts, and right anterior thalamic radiation (ATR). Behaviorally, children with DD performed significantly worse in various numerical tasks at baseline and follow-up, corroborating persistent deficits in number processing. The present results are in line with the literature showing that children with DD have reduced gray and white matter volumes in the numerical network. Our study further sheds light on the trajectory of brain development, revealing that these known structural differences in the long association fibers and the adjacent regions of the temporal- and frontoparietal cortex persist in dyscalculic children from childhood into adolescence. In conclusion, our results underscore that DD is a persistent learning disorder accompanied by deficits in number processing and reduced gray and white matter volumes in number related brain areas.

9.
Front Psychol ; 9: 2221, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510531

RESUMO

There is strong evidence for a link between numerical and spatial processing. However, whether this association is based on a common general magnitude system is far from conclusive and the impact of development is not yet known. Hence, the present study aimed to investigate the association between discrete non-symbolic number processing (comparison of dot arrays) and continuous spatial processing (comparison of angle sizes) in children between the third and sixth grade (N = 367). Present findings suggest that the processing of comparisons of number of dots or angle are related to each other, but with angle processing developing earlier and being more easily comparable than discrete number representations for children of this age range. Accordingly, results favor the existence of a more complex underlying magnitude system consisting of dissociated but closely interacting representations for continuous and discrete magnitudes.

10.
Transl Psychiatry ; 8(1): 273, 2018 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-30531959

RESUMO

Adequate mathematical competencies are currently indispensable in professional and social life. However, mathematics is often associated with stress and frustration and the confrontation with tasks that require mathematical knowledge triggers anxiety in many children. We examined if there is a relationship between math anxiety and changes in brain structure in children with and without developmental dyscalculia. Our findings showed that math anxiety is related to altered brain structure. In particular, the right amygdala volume was reduced in individuals with higher math anxiety. In conclusion, math anxiety not only hinders children in arithmetic development, but it is associated with altered brain structure in areas related to fear processing. This emphasizes the far-reaching outcome emotional factors in mathematical cognition can have and encourages educators and researchers alike to consider math anxiety to prevent detrimental long-term consequences on school achievement and quality of life, especially in children with developmental dyscalculia.


Assuntos
Tonsila do Cerebelo/patologia , Ansiedade/patologia , Discalculia/patologia , Conceitos Matemáticos , Adolescente , Ansiedade/complicações , Criança , Discalculia/complicações , Feminino , Humanos , Inteligência , Testes de Inteligência , Imageamento por Ressonância Magnética , Masculino
11.
Front Psychol ; 9: 263, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755376

RESUMO

Many children show negative emotions related to mathematics and some even develop mathematics anxiety. The present study focused on the relation between negative emotions and arithmetical performance in children with and without developmental dyscalculia (DD) using an affective priming task. Previous findings suggested that arithmetic performance is influenced if an affective prime precedes the presentation of an arithmetic problem. In children with DD specifically, responses to arithmetic operations are supposed to be facilitated by both negative and mathematics-related primes (=negative math priming effect).We investigated mathematical performance, math anxiety, and the domain-general abilities of 172 primary school children (76 with DD and 96 controls). All participants also underwent an affective priming task which consisted of the decision whether a simple arithmetic operation (addition or subtraction) that was preceded by a prime (positive/negative/neutral or mathematics-related) was true or false. Our findings did not reveal a negative math priming effect in children with DD. Furthermore, when considering accuracy levels, gender, or math anxiety, the negative math priming effect could not be replicated. However, children with DD showed more math anxiety when explicitly assessed by a specific math anxiety interview and showed lower mathematical performance compared to controls. Moreover, math anxiety was equally present in boys and girls, even in the earliest stages of schooling, and interfered negatively with performance. In conclusion, mathematics is often associated with negative emotions that can be manifested in specific math anxiety, particularly in children with DD. Importantly, present findings suggest that in the assessed age group, it is more reliable to judge math anxiety and investigate its effects on mathematical performance explicitly by adequate questionnaires than by an affective math priming task.

12.
Dev Cogn Neurosci ; 30: 291-303, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28442224

RESUMO

Developmental dyscalculia (DD) is a developmental learning disability associated with deficits in processing numerical and mathematical information. Although behavioural training can reduce these deficits, it is unclear which neuronal resources show a functional reorganization due to training. We examined typically developing (TD) children (N=16, mean age: 9.5 years) and age-, gender-, and handedness-matched children with DD (N=15, mean age: 9.5 years) during the performance of a numerical order task with fMRI and functional connectivity before and after 5-weeks of number line training. Using the intraparietal sulcus (IPS) as seed region, DD showed hyperconnectivity in parietal, frontal, visual, and temporal regions before the training controlling for age and IQ. Hyperconnectivity disappeared after training, whereas math abilities improved. Multivariate classification analysis of task-related fMRI data corroborated the connectivity results as the same group of TD could be discriminated from DD before but not after number line training (86.4 vs. 38.9%, respectively). Our results indicate that abnormally high functional connectivity in DD can be normalized on the neuronal level by intensive number line training. As functional connectivity in DD was indistinguishable to TD's connectivity after training, we conclude that training lead to a re-organization of inter-regional task engagement.


Assuntos
Desenvolvimento Infantil/fisiologia , Discalculia/fisiopatologia , Deficiências da Aprendizagem/fisiopatologia , Imageamento por Ressonância Magnética/métodos , Matemática/métodos , Criança , Feminino , Humanos , Masculino
13.
Front Hum Neurosci ; 11: 102, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28373834

RESUMO

The link between number and space has been discussed in the literature for some time, resulting in the theory that number, space and time might be part of a generalized magnitude system. To date, several behavioral and neuroimaging findings support the notion of a generalized magnitude system, although contradictory results showing a partial overlap or separate magnitude systems are also found. The possible existence of a generalized magnitude processing area leads to the question how individuals with developmental dyscalculia (DD), known for deficits in numerical-arithmetical abilities, process magnitudes. By means of neuropsychological tests and functional magnetic resonance imaging (fMRI) we aimed to examine the relationship between number and space in typical and atypical development. Participants were 16 adolescents with DD (14.1 years) and 14 typically developing (TD) peers (13.8 years). In the fMRI paradigm participants had to perform discrete (arrays of dots) and continuous magnitude (angles) comparisons as well as a mental rotation task. In the neuropsychological tests, adolescents with dyscalculia performed significantly worse in numerical and complex visuo-spatial tasks. However, they showed similar results to TD peers when making discrete and continuous magnitude decisions during the neuropsychological tests and the fMRI paradigm. A conjunction analysis of the fMRI data revealed commonly activated higher order visual (inferior and middle occipital gyrus) and parietal (inferior and superior parietal lobe) magnitude areas for the discrete and continuous magnitude tasks. Moreover, no differences were found when contrasting both magnitude processing conditions, favoring the possibility of a generalized magnitude system. Group comparisons further revealed that dyscalculic subjects showed increased activation in domain general regions, whilst TD peers activate domain specific areas to a greater extent. In conclusion, our results point to the existence of a generalized magnitude system in the occipito-parietal stream in typical development. The detailed investigation of spatial and numerical magnitude abilities in DD reveals that the deficits in number processing and arithmetic cannot be explained with a general magnitude deficiency. Our results further indicate that multiple neuro-cognitive components might contribute to the explanation of DD.

14.
Front Hum Neurosci ; 11: 629, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354041

RESUMO

Developmental dyscalculia (DD) is a learning disability affecting the acquisition of numerical-arithmetical skills. Studies report persistent deficits in number processing and aberrant functional activation of the fronto-parietal numerical network in DD. However, the neural development of numerical abilities has been scarcely investigated. The present paper provides a first attempt to investigate behavioral and neural trajectories of numerical abilities longitudinally in typically developing (TD) and DD children. During a study period of 4 years, 28 children (8-11 years) were evaluated twice by means of neuropsychological tests and a numerical order fMRI paradigm. Over time, TD children improved in numerical abilities and showed a consistent and well-developed fronto-parietal network. In contrast, DD children revealed persistent deficits in number processing and arithmetic. Brain imaging results of the DD group showed an age-related activation increase in parietal regions (intraparietal sulcus), pointing to a delayed development of number processing areas. Besides, an activation increase in frontal areas was observed over time, indicating the use of compensatory mechanisms. In conclusion, results suggest a continuation in neural development of number representation in DD, whereas the neural network for simple ordinal number estimation seems to be stable or show only subtle changes in TD children over time.

15.
Front Psychol ; 7: 913, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27445889

RESUMO

Calcularis is a computer-based training program which focuses on basic numerical skills, spatial representation of numbers and arithmetic operations. The program includes a user model allowing flexible adaptation to the child's individual knowledge and learning profile. The study design to evaluate the training comprises three conditions (Calcularis group, waiting control group, spelling training group). One hundred and thirty-eight children from second to fifth grade participated in the study. Training duration comprised a minimum of 24 training sessions of 20 min within a time period of 6-8 weeks. Compared to the group without training (waiting control group) and the group with an alternative training (spelling training group), the children of the Calcularis group demonstrated a higher benefit in subtraction and number line estimation with medium to large effect sizes. Therefore, Calcularis can be used effectively to support children in arithmetic performance and spatial number representation.

16.
Eur J Pediatr ; 174(1): 1-13, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25529864

RESUMO

UNLABELLED: Numerical skills are essential in our everyday life, and impairments in the development of number processing and calculation have a negative impact on schooling and professional careers. Approximately 3 to 6 % of children are affected from specific disorders of numerical understanding (developmental dyscalculia (DD)). Impaired development of number processing skills in these children is characterized by problems in various aspects of numeracy as well as alterations of brain activation and brain structure. Moreover, DD is assumed to be a very heterogeneous disorder putting special challenges to define homogeneous diagnostic criteria. Finally, interdisciplinary perspectives from psychology, neuroscience and education can contribute to the design for interventions, and although results are still sparse, they are promising and have shown positive effects on behaviour as well as brain function. CONCLUSION: In the current review, we are going to give an overview about typical and atypical development of numerical abilities at the behavioural and neuronal level. Furthermore, current status and obstacles in the definition and diagnostics of DD are discussed, and finally, relevant points that should be considered to make an intervention as successful as possible are summarized.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Discalculia/diagnóstico , Encéfalo/patologia , Criança , Deficiências do Desenvolvimento/terapia , Discalculia/terapia , Humanos , Conceitos Matemáticos , Testes Neuropsicológicos
18.
Brain Struct Funct ; 219(5): 1721-33, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23783231

RESUMO

Numerical understanding is important for everyday life. For children with developmental dyscalculia (DD), numbers and magnitudes present profound problems which are thought to be based upon neuronal impairments of key regions for numerical understanding. The aim of the present study was to investigate possible differences in white matter fibre integrity between children with DD and controls using diffusion tensor imaging. White matter integrity and behavioural measures were evaluated in 15 children with developmental dyscalculia aged around 10 years and 15 matched controls. The main finding, obtained by a whole brain group comparison, revealed reduced fractional anisotropy in the superior longitudinal fasciculus in children with developmental dyscalculia. In addition, a region of interest analysis exhibited prominent deficits in fibres of the superior longitudinal fasciculus adjacent to the intraparietal sulcus, which is thought to be the core region for number processing. To conclude, our results outline deficient fibre projection between parietal, temporal and frontal regions in children with developmental dyscalculia, and therefore raise the question of whether dyscalculia can be seen as a dysconnection syndrome. Since the superior longitudinal fasciculus is involved in the integration and control of distributed brain processes, the present results highlight the importance of considering broader domain-general mechanisms in the diagnosis and therapy of dyscalculia.


Assuntos
Encéfalo/patologia , Discalculia/patologia , Vias Neurais/patologia , Anisotropia , Mapeamento Encefálico , Criança , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Inteligência , Masculino , Matemática , Memória de Curto Prazo/fisiologia , Testes Neuropsicológicos , Índice de Gravidade de Doença , Estatística como Assunto
20.
Front Psychol ; 4: 489, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935586

RESUMO

This article presents the design and a first pilot evaluation of the computer-based training program Calcularis for children with developmental dyscalculia (DD) or difficulties in learning mathematics. The program has been designed according to insights on the typical and atypical development of mathematical abilities. The learning process is supported through multimodal cues, which encode different properties of numbers. To offer optimal learning conditions, a user model completes the program and allows flexible adaptation to a child's individual learning and knowledge profile. Thirty-two children with difficulties in learning mathematics completed the 6-12-weeks computer training. The children played the game for 20 min per day for 5 days a week. The training effects were evaluated using neuropsychological tests. Generally, children benefited significantly from the training regarding number representation and arithmetic operations. Furthermore, children liked to play with the program and reported that the training improved their mathematical abilities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...